Analysis of microwave ablation antenna optimization techniques

Analysis of microwave ablation antenna optimization techniques Microwave ablation is a minimally invasive treatment modality for malignant and benign tumors in several organs. While many microwave ablation antennas have been described in the literature, most have been designed assuming normal ambient tissue and have not accounted for tissue property changes that occur during intense heating. We analyzed three optimization approaches for canonical monopole and dual‐slot antennas: minimal reflection, spherical specific absorption rate (SAR) pattern, and spherical ablation zone. Simulated ablations with each optimal design were also validated in ex vivo liver tissue. Optimized designs for minimal reflection matched previously published results, while designs optimized for spherical SAR and spherical ablation yielded novel geometries. Surprisingly, optimization for spherical SAR rendered the most spherical ablation zones in ex vivo tissue. Optimizations for minimal reflection and spherical ablation zone did not achieve the most spherical ablation zones in experiments. These results point to the need for greater accuracy in dielectric and thermal tissue models to improve simulation‐aided design, and to the potential for continued refinement in microwave ablation antenna design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Rf and Microwave Computer-Aided Engineering Wiley

Analysis of microwave ablation antenna optimization techniques

Loading next page...
 
/lp/wiley/analysis-of-microwave-ablation-antenna-optimization-techniques-WZMw6UMRQw
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
1096-4290
eISSN
1099-047X
D.O.I.
10.1002/mmce.21224
Publisher site
See Article on Publisher Site

Abstract

Microwave ablation is a minimally invasive treatment modality for malignant and benign tumors in several organs. While many microwave ablation antennas have been described in the literature, most have been designed assuming normal ambient tissue and have not accounted for tissue property changes that occur during intense heating. We analyzed three optimization approaches for canonical monopole and dual‐slot antennas: minimal reflection, spherical specific absorption rate (SAR) pattern, and spherical ablation zone. Simulated ablations with each optimal design were also validated in ex vivo liver tissue. Optimized designs for minimal reflection matched previously published results, while designs optimized for spherical SAR and spherical ablation yielded novel geometries. Surprisingly, optimization for spherical SAR rendered the most spherical ablation zones in ex vivo tissue. Optimizations for minimal reflection and spherical ablation zone did not achieve the most spherical ablation zones in experiments. These results point to the need for greater accuracy in dielectric and thermal tissue models to improve simulation‐aided design, and to the potential for continued refinement in microwave ablation antenna design.

Journal

International Journal of Rf and Microwave Computer-Aided EngineeringWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial