An L1 analysis of a kernel‐based hazard rate estimator

An L1 analysis of a kernel‐based hazard rate estimator This article provides an L1 analysis of the standard nonparametric kernel‐based hazard rate estimator under the random right censorship model. The analysis starts with the asymptotic formula for the integrated mean absolute error (IMAE) and then addresses the issue of bandwidth selection. In particular, we show that as a function of bandwidth, the asymptotic minimum of IMAE occurs at the minimising argument of the dominant term of the IMAE's asymptotic expression. Further, it is noted that finding the minimising argument of the dominant term of the asymptotic IMAE is very close to the similar problem in L1 density estimation except that, as one would expect, the minimising argument now depends on the functionals of the unknown hazard rate. We then use estimates of these unknown functionals in an algorithm to calculate an adaptive version of the optimal bandwidth. We also show that, asymptotically, both theoretical and adaptive forms of the bandwidths do minimise the L1 distance between the true hazard rate function and its kernel estimator. We also provide a simulation study to illustrate the methodology and compare L1 errors of hazard rate estimates which use L1 and L2 optimal bandwidths. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australian & New Zealand Journal of Statistics Wiley

An L1 analysis of a kernel‐based hazard rate estimator

Loading next page...
 
/lp/wiley/an-l1-analysis-of-a-kernel-based-hazard-rate-estimator-JxulPlUF2Y
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Australian Statistical Publishing Association Inc.
ISSN
1369-1473
eISSN
1467-842X
D.O.I.
10.1111/anzs.12224
Publisher site
See Article on Publisher Site

Abstract

This article provides an L1 analysis of the standard nonparametric kernel‐based hazard rate estimator under the random right censorship model. The analysis starts with the asymptotic formula for the integrated mean absolute error (IMAE) and then addresses the issue of bandwidth selection. In particular, we show that as a function of bandwidth, the asymptotic minimum of IMAE occurs at the minimising argument of the dominant term of the IMAE's asymptotic expression. Further, it is noted that finding the minimising argument of the dominant term of the asymptotic IMAE is very close to the similar problem in L1 density estimation except that, as one would expect, the minimising argument now depends on the functionals of the unknown hazard rate. We then use estimates of these unknown functionals in an algorithm to calculate an adaptive version of the optimal bandwidth. We also show that, asymptotically, both theoretical and adaptive forms of the bandwidths do minimise the L1 distance between the true hazard rate function and its kernel estimator. We also provide a simulation study to illustrate the methodology and compare L1 errors of hazard rate estimates which use L1 and L2 optimal bandwidths.

Journal

Australian & New Zealand Journal of StatisticsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial