An Integrated Multifunctional Nanoplatform for Deep‐Tissue Dual‐Mode Imaging

An Integrated Multifunctional Nanoplatform for Deep‐Tissue Dual‐Mode Imaging The combination of biocompatible superparamagnetic and photoluminescent nanoparticles (NPs) is intensively studied as highly promising multifunctional (magnetic confinement and targeting, imaging, etc.) tools in biomedical applications. However, most of these hybrid NPs exhibit low signal contrast and shallow tissue penetration for optical imaging due to tissue‐induced optical extinction and autofluorescence, since in many cases, their photoluminescent components emit in the visible spectral range. Yet, the search for multifunctional NPs suitable for high photoluminescence signal‐to‐noise ratio, deep‐tissue imaging is still ongoing. Herein, a biocompatible core/shell/shell sandwich structured Fe3O4@SiO2@NaYF4:Nd3+ nanoplatform possessing excellent superparamagnetic and near‐infrared (excitation) to near‐infrared (emission), i.e., NIR‐to‐NIR photoluminescence properties is developed. They can be rapidly magnetically confined, allowing the NIR photoluminescence signal to be detected through a tissue as thick as 13 mm, accompanied by high T2 relaxivity in magnetic resonance imaging. The fact that both the excitation and emission wavelengths of these NPs are in the optically transparent biological windows, along with excellent photostability, fast magnetic response, significant T2‐contrast enhancement, and negligible cytotoxicity, makes them extremely promising for use in high‐resolution, deep‐tissue dual‐mode (optical and magnetic resonance) in vivo imaging and magnetic‐driven applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

An Integrated Multifunctional Nanoplatform for Deep‐Tissue Dual‐Mode Imaging

Loading next page...
 
/lp/wiley/an-integrated-multifunctional-nanoplatform-for-deep-tissue-dual-mode-JK1hh62N7C
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1616-301X
eISSN
1616-3028
D.O.I.
10.1002/adfm.201706235
Publisher site
See Article on Publisher Site

Abstract

The combination of biocompatible superparamagnetic and photoluminescent nanoparticles (NPs) is intensively studied as highly promising multifunctional (magnetic confinement and targeting, imaging, etc.) tools in biomedical applications. However, most of these hybrid NPs exhibit low signal contrast and shallow tissue penetration for optical imaging due to tissue‐induced optical extinction and autofluorescence, since in many cases, their photoluminescent components emit in the visible spectral range. Yet, the search for multifunctional NPs suitable for high photoluminescence signal‐to‐noise ratio, deep‐tissue imaging is still ongoing. Herein, a biocompatible core/shell/shell sandwich structured Fe3O4@SiO2@NaYF4:Nd3+ nanoplatform possessing excellent superparamagnetic and near‐infrared (excitation) to near‐infrared (emission), i.e., NIR‐to‐NIR photoluminescence properties is developed. They can be rapidly magnetically confined, allowing the NIR photoluminescence signal to be detected through a tissue as thick as 13 mm, accompanied by high T2 relaxivity in magnetic resonance imaging. The fact that both the excitation and emission wavelengths of these NPs are in the optically transparent biological windows, along with excellent photostability, fast magnetic response, significant T2‐contrast enhancement, and negligible cytotoxicity, makes them extremely promising for use in high‐resolution, deep‐tissue dual‐mode (optical and magnetic resonance) in vivo imaging and magnetic‐driven applications.

Journal

Advanced Functional MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial