An improved stress recovery technique for low‐order 3D finite elements

An improved stress recovery technique for low‐order 3D finite elements In this paper, we propose a stress recovery procedure for low‐order finite elements in 3D. For each finite element, the recovered stress field is obtained by satisfying equilibrium in an average sense and by projecting the directly calculated stress field onto a conveniently chosen space. Compared with existing recovery techniques, the current procedure gives more accurate stress fields, is simpler to implement, and can be applied to different types of elements without further modification. We demonstrate, through a set of examples in linear elasticity, that the recovered stresses converge at a higher rate than that of directly calculated stresses and that, in some cases, the rate of convergence is the same as that of the displacement field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal for Numerical Methods in Engineering Wiley

An improved stress recovery technique for low‐order 3D finite elements

Loading next page...
 
/lp/wiley/an-improved-stress-recovery-technique-for-low-order-3d-finite-elements-RRXFQTkBJe
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0029-5981
eISSN
1097-0207
D.O.I.
10.1002/nme.5734
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose a stress recovery procedure for low‐order finite elements in 3D. For each finite element, the recovered stress field is obtained by satisfying equilibrium in an average sense and by projecting the directly calculated stress field onto a conveniently chosen space. Compared with existing recovery techniques, the current procedure gives more accurate stress fields, is simpler to implement, and can be applied to different types of elements without further modification. We demonstrate, through a set of examples in linear elasticity, that the recovered stresses converge at a higher rate than that of directly calculated stresses and that, in some cases, the rate of convergence is the same as that of the displacement field.

Journal

International Journal for Numerical Methods in EngineeringWiley

Published: Jan 6, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off