An Euler‐genus approach to the calculation of the crosscap‐number polynomial

An Euler‐genus approach to the calculation of the crosscap‐number polynomial In 1994, J. Chen, J. Gross, and R. Rieper demonstrated how to use the rank of Mohar's overlap matrix to calculate the crosscap‐number distribution, that is, the distribution of the embeddings of a graph in the nonorientable surfaces. That has ever since been by far the most frequent way that these distributions have been calculated. This article introduces a way to calculate the Euler‐genus polynomial of a graph, which combines the orientable and the nonorientable embeddings, without using the overlap matrix. The crosscap‐number polynomial for the nonorientable embeddings is then easily calculated from the Euler‐genus polynomial and the genus polynomial. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Graph Theory Wiley

An Euler‐genus approach to the calculation of the crosscap‐number polynomial

Loading next page...
 
/lp/wiley/an-euler-genus-approach-to-the-calculation-of-the-crosscap-number-Y2JtnMHbDc
Publisher
Wiley
Copyright
Copyright © 2018 Wiley Periodicals, Inc.
ISSN
0364-9024
eISSN
1097-0118
D.O.I.
10.1002/jgt.22186
Publisher site
See Article on Publisher Site

Abstract

In 1994, J. Chen, J. Gross, and R. Rieper demonstrated how to use the rank of Mohar's overlap matrix to calculate the crosscap‐number distribution, that is, the distribution of the embeddings of a graph in the nonorientable surfaces. That has ever since been by far the most frequent way that these distributions have been calculated. This article introduces a way to calculate the Euler‐genus polynomial of a graph, which combines the orientable and the nonorientable embeddings, without using the overlap matrix. The crosscap‐number polynomial for the nonorientable embeddings is then easily calculated from the Euler‐genus polynomial and the genus polynomial.

Journal

Journal of Graph TheoryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off