An efficient Bayesian approach to multiple structural change in multivariate time series

An efficient Bayesian approach to multiple structural change in multivariate time series This paper provides a feasible approach to estimation and forecasting of multiple structural breaks for vector autoregressions and other multivariate models. Owing to conjugate prior assumptions we obtain a very efficient sampler for the regime allocation variable. A new hierarchical prior is introduced to allow for learning over different structural breaks. The model is extended to independent breaks in regression coefficients and the volatility parameters. Two empirical applications show the improvements the model has over benchmarks. In a macro application with seven variables we empirically demonstrate the benefits from moving from a multivariate structural break model to a set of univariate structural break models to account for heterogeneous break patterns across data series. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Econometrics Wiley

An efficient Bayesian approach to multiple structural change in multivariate time series

Loading next page...
 
/lp/wiley/an-efficient-bayesian-approach-to-multiple-structural-change-in-TzLJ4Nturu
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0883-7252
eISSN
1099-1255
D.O.I.
10.1002/jae.2606
Publisher site
See Article on Publisher Site

Abstract

This paper provides a feasible approach to estimation and forecasting of multiple structural breaks for vector autoregressions and other multivariate models. Owing to conjugate prior assumptions we obtain a very efficient sampler for the regime allocation variable. A new hierarchical prior is introduced to allow for learning over different structural breaks. The model is extended to independent breaks in regression coefficients and the volatility parameters. Two empirical applications show the improvements the model has over benchmarks. In a macro application with seven variables we empirically demonstrate the benefits from moving from a multivariate structural break model to a set of univariate structural break models to account for heterogeneous break patterns across data series.

Journal

Journal of Applied EconometricsWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off