An Assessment of the Role of Opioid Receptors in the Response to Cannabimimetic Drugs

An Assessment of the Role of Opioid Receptors in the Response to Cannabimimetic Drugs Abstract: Cannabimimetic drugs have been shown to inhibit adenylate cyclase activity in NI8TG2 neuroblastoma cells. This investigation examines the possible role of opioid receptors in the cannabimimetic response. Opioid receptors of the δ subtype were found on N18TG2 membranes using (3H)D‐Ala2‐D‐Leu5‐enkephalin. No δ or K receptors were detected using selective ligands for these sites. The δ binding affinity and capacity were unaltered by cannabimimetic drugs. To test if cannabimimetic drugs may modulate opioid effector mechanisms, cyclic AMP metabolism was determined in intact cells and in membranes. N18TG2 adenylate cyclase was inhibited by the cannabimimetic drugs Δ9‐tetrahydrocannabinol and desacetyllevonantradol, and by the opioid agents morphine, etorphine, and D‐Ala2‐Met5‐enkephalinamide. The opioid inhibition was reversed by naloxone and naltrexone; however, the cannabimimetic response was unaffected. Both cannabimimetic and opioid drugs decreased cyclic AMP accumulation in intact cells, but opioid antagonists blocked the response only to the latter. Thus, cannabimimetic effects are observed even though opioid receptors are blocked by antagonist drugs. The interaction between desacetyllevonantradol and etorphine was neither synergistic nor additive at maximal concentrations, suggesting that these two drugs operate via the same effector mechanism. Other neuronal cell lines having an opioid response were also examined. The cannabimimetic inhibition of cyclic AMP accumulation in NG108‐15 neuroblastoma x glioma cells was not as great as the response in N18TG2. N4TG1 neuroblastoma cells did not respond to cannabimimetic drugs under any conditions tested. Thus, the cannabimimetic inhibition of adenylate cyclase is not universally observed, and the efficacy of the cannabimimetic response does not correlate with the efficacy of the opioid response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurochemistry Wiley

An Assessment of the Role of Opioid Receptors in the Response to Cannabimimetic Drugs

Loading next page...
 
/lp/wiley/an-assessment-of-the-role-of-opioid-receptors-in-the-response-to-O7lYWR4X0c
Publisher site
See Article on Publisher Site

Abstract

Abstract: Cannabimimetic drugs have been shown to inhibit adenylate cyclase activity in NI8TG2 neuroblastoma cells. This investigation examines the possible role of opioid receptors in the cannabimimetic response. Opioid receptors of the δ subtype were found on N18TG2 membranes using (3H)D‐Ala2‐D‐Leu5‐enkephalin. No δ or K receptors were detected using selective ligands for these sites. The δ binding affinity and capacity were unaltered by cannabimimetic drugs. To test if cannabimimetic drugs may modulate opioid effector mechanisms, cyclic AMP metabolism was determined in intact cells and in membranes. N18TG2 adenylate cyclase was inhibited by the cannabimimetic drugs Δ9‐tetrahydrocannabinol and desacetyllevonantradol, and by the opioid agents morphine, etorphine, and D‐Ala2‐Met5‐enkephalinamide. The opioid inhibition was reversed by naloxone and naltrexone; however, the cannabimimetic response was unaffected. Both cannabimimetic and opioid drugs decreased cyclic AMP accumulation in intact cells, but opioid antagonists blocked the response only to the latter. Thus, cannabimimetic effects are observed even though opioid receptors are blocked by antagonist drugs. The interaction between desacetyllevonantradol and etorphine was neither synergistic nor additive at maximal concentrations, suggesting that these two drugs operate via the same effector mechanism. Other neuronal cell lines having an opioid response were also examined. The cannabimimetic inhibition of cyclic AMP accumulation in NG108‐15 neuroblastoma x glioma cells was not as great as the response in N18TG2. N4TG1 neuroblastoma cells did not respond to cannabimimetic drugs under any conditions tested. Thus, the cannabimimetic inhibition of adenylate cyclase is not universally observed, and the efficacy of the cannabimimetic response does not correlate with the efficacy of the opioid response.

Journal

Journal of NeurochemistryWiley

Published: Jun 1, 1986

References

  • Demonstration and characterization of a stereospecific opiate receptor in the neuroblastoma N18TG2 cells
    Law, Law; Herz, Herz; Loh, Loh
  • Microsomal opiate receptors: characterization of smooth microsomal and synaptic membrane opiate receptors
    Roth, Roth; Coscia, Coscia
  • The physiology and pharmacology of spinal opiates
    Yaksh, Yaksh; Noueihed, Noueihed

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off