Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia

Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders... Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were measured in various brain areas (substantia nigra, putamen, caudate nucleus, globus pallidus, and cerebral cortex) from patients dying with Parkinson's disease, progressive supranuclear palsy, multiple‐system atrophy, and Huntington's disease and from control subjects with no neuropathological changes in substantia nigra. GSH levels were reduced in substantia nigra in Parkinson's disease patients (40% compared to control subjects) and GSSG levels were marginally (29%) but insignificantly elevated; there were no changes in other brain areas. The only significant change in multiple‐system atrophy was an increase of GSH (196%) coupled with a reduction of GSSG (60%) in the globus pallidus. The only change in progressive supranuclear palsy was a reduced level of GSH in the caudate nucleus (51%). The only change in Huntington's disease was a reduction of GSSG in the caudate nucleus (50%). Despite profound nigral cell loss in the substantia nigra in Parkinson's disease, multiple‐system atrophy, and progressive supranuclear palsy, the level of GSH in the substantia nigra was significantly reduced only in Parkinson's disease. This suggests that the change in GSH in Parkinson's disease is not solely due to nigral cell death, or entirely explained by drug therapy, for multiple‐system atrophy patients were also treated with levodopa. The altered GSH/GSSG ratio in the substantia nigra in Parkinson's disease is consistent with the concept of oxidative stress as a major component in the pathogenesis of nigral cell death in Parkinson's disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Neurology Wiley

Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia

Loading next page...
 
/lp/wiley/alterations-in-glutathione-levels-in-parkinson-s-disease-and-other-EKeH8ogqOM
Publisher
Wiley
Copyright
Copyright © 1994 American Neurological Association
ISSN
0364-5134
eISSN
1531-8249
D.O.I.
10.1002/ana.410360305
Publisher site
See Article on Publisher Site

Abstract

Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were measured in various brain areas (substantia nigra, putamen, caudate nucleus, globus pallidus, and cerebral cortex) from patients dying with Parkinson's disease, progressive supranuclear palsy, multiple‐system atrophy, and Huntington's disease and from control subjects with no neuropathological changes in substantia nigra. GSH levels were reduced in substantia nigra in Parkinson's disease patients (40% compared to control subjects) and GSSG levels were marginally (29%) but insignificantly elevated; there were no changes in other brain areas. The only significant change in multiple‐system atrophy was an increase of GSH (196%) coupled with a reduction of GSSG (60%) in the globus pallidus. The only change in progressive supranuclear palsy was a reduced level of GSH in the caudate nucleus (51%). The only change in Huntington's disease was a reduction of GSSG in the caudate nucleus (50%). Despite profound nigral cell loss in the substantia nigra in Parkinson's disease, multiple‐system atrophy, and progressive supranuclear palsy, the level of GSH in the substantia nigra was significantly reduced only in Parkinson's disease. This suggests that the change in GSH in Parkinson's disease is not solely due to nigral cell death, or entirely explained by drug therapy, for multiple‐system atrophy patients were also treated with levodopa. The altered GSH/GSSG ratio in the substantia nigra in Parkinson's disease is consistent with the concept of oxidative stress as a major component in the pathogenesis of nigral cell death in Parkinson's disease.

Journal

Annals of NeurologyWiley

Published: Sep 1, 1994

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off