Affine relaxations for the solutions of constrained parametric ordinary differential equations

Affine relaxations for the solutions of constrained parametric ordinary differential equations This work presents a numerical method for evaluating affine relaxations of the solutions of parametric ordinary differential equations. This method is derived from a general theory for the construction of a polyhedral outer approximation of the reachable set (“polyhedral bounds”) of a constrained dynamic system subject to uncertain time‐varying inputs and initial conditions. This theory is an extension of differential inequality‐based comparison theorems. The new affine relaxation method is capable of incorporating information from simultaneously constructed interval bounds as well as other constraints on the states; not only does this improve the quality of the relaxations but it also yields numerical advantages that speed up the computation of the relaxations. Examples demonstrate that tight affine relaxations can be computed efficiently with this method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optimal Control Applications and Methods Wiley

Affine relaxations for the solutions of constrained parametric ordinary differential equations

Loading next page...
 
/lp/wiley/affine-relaxations-for-the-solutions-of-constrained-parametric-dX8dcTZz0u
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0143-2087
eISSN
1099-1514
D.O.I.
10.1002/oca.2323
Publisher site
See Article on Publisher Site

Abstract

This work presents a numerical method for evaluating affine relaxations of the solutions of parametric ordinary differential equations. This method is derived from a general theory for the construction of a polyhedral outer approximation of the reachable set (“polyhedral bounds”) of a constrained dynamic system subject to uncertain time‐varying inputs and initial conditions. This theory is an extension of differential inequality‐based comparison theorems. The new affine relaxation method is capable of incorporating information from simultaneously constructed interval bounds as well as other constraints on the states; not only does this improve the quality of the relaxations but it also yields numerical advantages that speed up the computation of the relaxations. Examples demonstrate that tight affine relaxations can be computed efficiently with this method.

Journal

Optimal Control Applications and MethodsWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off