Adsorption of metal ions by microwave assisted grafting of cross‐linked chitosan beads. Equilibrium, isotherm, thermodynamic and desorption studies

Adsorption of metal ions by microwave assisted grafting of cross‐linked chitosan beads.... Chemical modification of chitosan has become increasingly essential due to chitosan versatility that enables the material to be easily modified in a way of increasing its properties in adsorption processes. In this investigation, chitosan solution was cross‐linked with glutaraldehyde the cross‐linked solution was used in producing the beads and thereafter grafted with ethylene acrylic acid. The chemical functionalities of the beads were obtained by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), X‐ray diffraction (XRD) and Thermogravimetric analysis (TGA). Adsorption of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+ and Cd2+ ions from single component aqueous mixture by grafted cross‐linked chitosan beads (GXXB) was studied as a function of pH, temperature, initial concentration, contact time, agitation speed and ionic strength. Equilibrium data was obtained from the adsorption experiment, the data were applied in isotherm, thermodynamics and kinetic studies. The Langmuir, Temkin and Dubinin‐kaganer‐Radushkevich (DKR) model were successful in describing the isotherm data for the considered metal ions while the Freundlich model was not efficient in describing the experimental data. Pseudo‐second order and intra‐particle model described the kinetic data quite well. Thermodynamic parameters such as Gibb's free energy change (∆Go), enthalpy change (∆Ho) and entropy change (∆So) were calculated and the results showed the adsorption of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+ and Cd2+ ions onto GXXB is spontaneous and endothermic in nature. Regeneration of the used adsorbent was effective for the studied metal ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Adsorption of metal ions by microwave assisted grafting of cross‐linked chitosan beads. Equilibrium, isotherm, thermodynamic and desorption studies

Loading next page...
 
/lp/wiley/adsorption-of-metal-ions-by-microwave-assisted-grafting-of-cross-BSUiBPB2TZ
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4131
Publisher site
See Article on Publisher Site

Abstract

Chemical modification of chitosan has become increasingly essential due to chitosan versatility that enables the material to be easily modified in a way of increasing its properties in adsorption processes. In this investigation, chitosan solution was cross‐linked with glutaraldehyde the cross‐linked solution was used in producing the beads and thereafter grafted with ethylene acrylic acid. The chemical functionalities of the beads were obtained by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), X‐ray diffraction (XRD) and Thermogravimetric analysis (TGA). Adsorption of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+ and Cd2+ ions from single component aqueous mixture by grafted cross‐linked chitosan beads (GXXB) was studied as a function of pH, temperature, initial concentration, contact time, agitation speed and ionic strength. Equilibrium data was obtained from the adsorption experiment, the data were applied in isotherm, thermodynamics and kinetic studies. The Langmuir, Temkin and Dubinin‐kaganer‐Radushkevich (DKR) model were successful in describing the isotherm data for the considered metal ions while the Freundlich model was not efficient in describing the experimental data. Pseudo‐second order and intra‐particle model described the kinetic data quite well. Thermodynamic parameters such as Gibb's free energy change (∆Go), enthalpy change (∆Ho) and entropy change (∆So) were calculated and the results showed the adsorption of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+ and Cd2+ ions onto GXXB is spontaneous and endothermic in nature. Regeneration of the used adsorbent was effective for the studied metal ions.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off