Adenovirus‐Mediated Gene Transfer of Inhibitors of Apoptosis Proteins Delays Apoptosis in Cerebellar Granule Neurons

Adenovirus‐Mediated Gene Transfer of Inhibitors of Apoptosis Proteins Delays Apoptosis in... Abstract : The inhibitor of apoptosis (IAP) family of anti‐apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 mM potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome‐linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 mM potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal‐induced N‐acetly‐Asp‐Glu‐Val‐Asp‐specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μM or 1 mM glutamate did not induce caspase activity and adenoviral‐mediated expression of IAPs had no influence on subsequent excitotoxic cell death. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurochemistry Wiley

Adenovirus‐Mediated Gene Transfer of Inhibitors of Apoptosis Proteins Delays Apoptosis in Cerebellar Granule Neurons

Loading next page...
 
/lp/wiley/adenovirus-mediated-gene-transfer-of-inhibitors-of-apoptosis-proteins-ZJDDCz3sqA
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© International Society for Neurochemistry
ISSN
0022-3042
eISSN
1471-4159
D.O.I.
10.1046/j.1471-4159.1999.0720292.x
Publisher site
See Article on Publisher Site

Abstract

Abstract : The inhibitor of apoptosis (IAP) family of anti‐apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 mM potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome‐linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 mM potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal‐induced N‐acetly‐Asp‐Glu‐Val‐Asp‐specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μM or 1 mM glutamate did not induce caspase activity and adenoviral‐mediated expression of IAPs had no influence on subsequent excitotoxic cell death.

Journal

Journal of NeurochemistryWiley

Published: Jan 1, 1999

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial