“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Abnormal glucose metabolism in heterozygous mutant mice for a type I receptor required for BMP signaling

BMPRIA and its high‐affinity ligand BMP4 have recently been shown to be expressed in the β‐cells of the pancreas. Here, we report the abnormalities of heterozygous mice for Bmpr1a in glucose metabolism during the course of intraperitoneal glucose tolerance test. The heterozygous mice had increased blood glucose levels throughout the first 2.5 h after the administration of glucose. Analysis of glucose‐stimulated insulin secretion (GSIS) indicates that insulin secretion in the heterozygous mice is compromised, and induction of secreted insulin by stimulation is substantially lower compared with the wild‐type controls. No apparent abnormalities in pancreas, thyroid, and liver were seen upon histological examination. Real‐time PCR results of selected genes showed an increase in the mRNA level of Ins1 and Ins2 in the heterozygous group. These results indicate that the glucose‐sensing pathway in these heterozygous mice is altered because of the heterozygosity in Bmpr1a. Together, our data suggest that BMP signaling through BMPRIA plays an important role in glucose metabolism and possibly working through the GSIS pathway. genesis 47:385–391, 2009. © 2009 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genesis: the Journal of Genetics and Development (Formerly Developmental Genetics) Wiley
Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.