A window‐less approach for capturing time‐varying connectivity in fMRI data reveals the presence of states with variable rates of change

A window‐less approach for capturing time‐varying connectivity in fMRI data reveals the... Functional connectivity during the resting state has been shown to change over time (i.e., has a dynamic connectivity). However, resting‐state fluctuations, in contrast to task‐based experiments, are not initiated by an external stimulus. Consequently, a more complicated method needs to be designed to measure the dynamic connectivity. Previous approaches have been based on assumptions regarding the nature of the underlying dynamic connectivity to compensate for this knowledge gap. The most common assumption is what we refer to as locality assumption. Under a locality assumption, a single connectivity state can be estimated from data that are close in time. This assumption is so natural that it has been either explicitly or implicitly embedded in many current approaches to capture dynamic connectivity. However, an important drawback of methods using this assumption is they are unable to capture dynamic changes in connectivity beyond the embedded rate while, there has been no evidence that the rate of change in brain connectivity matches the rates enforced by this assumption. In this study, we propose an approach that enables us to capture functional connectivity with arbitrary rates of change, varying from very slow to the theoretically maximum possible rate of change, which is only imposed by the sampling rate of the imaging device. This method allows us to observe unique patterns of connectivity that were not observable with previous approaches. As we explain further, these patterns are also significantly correlated to the age and gender of study subjects, which suggests they are also neurobiologically related. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Human Brain Mapping Wiley

A window‐less approach for capturing time‐varying connectivity in fMRI data reveals the presence of states with variable rates of change

Loading next page...
 
/lp/wiley/a-window-less-approach-for-capturing-time-varying-connectivity-in-fmri-jebSiTYmnr
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
1065-9471
eISSN
1097-0193
D.O.I.
10.1002/hbm.23939
Publisher site
See Article on Publisher Site

Abstract

Functional connectivity during the resting state has been shown to change over time (i.e., has a dynamic connectivity). However, resting‐state fluctuations, in contrast to task‐based experiments, are not initiated by an external stimulus. Consequently, a more complicated method needs to be designed to measure the dynamic connectivity. Previous approaches have been based on assumptions regarding the nature of the underlying dynamic connectivity to compensate for this knowledge gap. The most common assumption is what we refer to as locality assumption. Under a locality assumption, a single connectivity state can be estimated from data that are close in time. This assumption is so natural that it has been either explicitly or implicitly embedded in many current approaches to capture dynamic connectivity. However, an important drawback of methods using this assumption is they are unable to capture dynamic changes in connectivity beyond the embedded rate while, there has been no evidence that the rate of change in brain connectivity matches the rates enforced by this assumption. In this study, we propose an approach that enables us to capture functional connectivity with arbitrary rates of change, varying from very slow to the theoretically maximum possible rate of change, which is only imposed by the sampling rate of the imaging device. This method allows us to observe unique patterns of connectivity that were not observable with previous approaches. As we explain further, these patterns are also significantly correlated to the age and gender of study subjects, which suggests they are also neurobiologically related.

Journal

Human Brain MappingWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial