A test for gene–environment interaction in the presence of measurement error in the environmental variable

A test for gene–environment interaction in the presence of measurement error in the... The identification of gene–environment interactions in relation to risk of human diseases has been challenging. One difficulty has been that measurement error in the exposure can lead to massive reductions in the power of the test, as well as in bias toward the null in the interaction effect estimates. Leveraging previous work on linear discriminant analysis, we develop a new test of interaction between genetic variants and a continuous exposure that mitigates these detrimental impacts of exposure measurement error in ExG testing by reversing the role of exposure and the diseases status in the fitted model, thus transforming the analysis to standard linear regression. Through simulation studies, we show that the proposed approach is valid in the presence of classical exposure measurement error as well as when there is correlation between the exposure and the genetic variant. Simulations also demonstrated that the reverse test has greater power compared to logistic regression. Finally, we confirmed that our approach eliminates bias from exposure measurement error in estimation. Computing times are reduced by as much as fivefold in this new approach. For illustrative purposes, we applied the new approach to an ExGWAS study of interactions with alcohol and body mass index among 1,145 cases with invasive breast cancer and 1,142 controls from the Cancer Genetic Markers of Susceptibility study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genetic Epidemiology Wiley

A test for gene–environment interaction in the presence of measurement error in the environmental variable

Loading next page...
 
/lp/wiley/a-test-for-gene-environment-interaction-in-the-presence-of-measurement-nY7jr5QqfY
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0741-0395
eISSN
1098-2272
D.O.I.
10.1002/gepi.22113
Publisher site
See Article on Publisher Site

Abstract

The identification of gene–environment interactions in relation to risk of human diseases has been challenging. One difficulty has been that measurement error in the exposure can lead to massive reductions in the power of the test, as well as in bias toward the null in the interaction effect estimates. Leveraging previous work on linear discriminant analysis, we develop a new test of interaction between genetic variants and a continuous exposure that mitigates these detrimental impacts of exposure measurement error in ExG testing by reversing the role of exposure and the diseases status in the fitted model, thus transforming the analysis to standard linear regression. Through simulation studies, we show that the proposed approach is valid in the presence of classical exposure measurement error as well as when there is correlation between the exposure and the genetic variant. Simulations also demonstrated that the reverse test has greater power compared to logistic regression. Finally, we confirmed that our approach eliminates bias from exposure measurement error in estimation. Computing times are reduced by as much as fivefold in this new approach. For illustrative purposes, we applied the new approach to an ExGWAS study of interactions with alcohol and body mass index among 1,145 cases with invasive breast cancer and 1,142 controls from the Cancer Genetic Markers of Susceptibility study.

Journal

Genetic EpidemiologyWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off