A review on design strategies for metal hydrides with enhanced reaction thermodynamics for hydrogen storage applications

A review on design strategies for metal hydrides with enhanced reaction thermodynamics for... Hydrogen is an alternative clean energy carrier that can replace current fossil fuels for vehicular applications. Thus, it is important to develop a method that would enable a high density of hydrogen to be stored safely under the operating conditions of polymer electrolyte membrane fuel cells. Even though metal hydrides are regarded as promising candidates that can safely store a high density of hydrogen, their stable nature makes it difficult for them to release hydrogen at mild temperatures in the range of 50 to 150°C. In this review, 3 primary strategies, namely, introduction of appropriate dopants, particle size control, and design of novel reactant mixtures based on high‐throughput screening methods, are briefly described with the aim of evaluating the potential of metal hydrides for hydrogen storage applications. The review suggests that successful development of promising hydrogen storage systems will depend on collaborative introduction of these 3 primary design strategies through the combined utilization of experimental and computational techniques to overcome the major challenges associated with the reaction thermodynamics of metal hydrides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

A review on design strategies for metal hydrides with enhanced reaction thermodynamics for hydrogen storage applications

Loading next page...
 
/lp/wiley/a-review-on-design-strategies-for-metal-hydrides-with-enhanced-dZU7t4DZgV
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.3919
Publisher site
See Article on Publisher Site

Abstract

Hydrogen is an alternative clean energy carrier that can replace current fossil fuels for vehicular applications. Thus, it is important to develop a method that would enable a high density of hydrogen to be stored safely under the operating conditions of polymer electrolyte membrane fuel cells. Even though metal hydrides are regarded as promising candidates that can safely store a high density of hydrogen, their stable nature makes it difficult for them to release hydrogen at mild temperatures in the range of 50 to 150°C. In this review, 3 primary strategies, namely, introduction of appropriate dopants, particle size control, and design of novel reactant mixtures based on high‐throughput screening methods, are briefly described with the aim of evaluating the potential of metal hydrides for hydrogen storage applications. The review suggests that successful development of promising hydrogen storage systems will depend on collaborative introduction of these 3 primary design strategies through the combined utilization of experimental and computational techniques to overcome the major challenges associated with the reaction thermodynamics of metal hydrides.

Journal

International Journal of Energy ResearchWiley

Published: Jan 25, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial