A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis

A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis Here we report on a lipid‐signalling pathway in plants that is downstream of phosphatidic acid and involves the Arabidopsis protein kinase, AGC2‐1, regulated by the 3′‐phosphoinositide‐dependent kinase‐1 (AtPDK1). AGC2‐1 specifically interacts with AtPDK1 through a conserved C‐terminal hydrophobic motif that leads to its phosphorylation and activation, whereas inhibition of AtPDK1 expression by RNA interference abolishes AGC2‐1 activity. Phosphatidic acid specifically binds to AtPDK1 and stimulates AGC2‐1 in an AtPDK1‐dependent manner. AtPDK1 is ubiquitously expressed in all plant tissues, whereas expression of AGC2‐1 is abundant in fast‐growing organs and dividing cells, and activated during re‐entry of cells into the cell cycle after sugar starvation‐induced G1‐phase arrest. Plant hormones, auxin and cytokinin, synergistically activate the AtPDK1‐regulated AGC2‐1 kinase, indicative of a role in growth and cell division. Cellular localisation of GFP‐AGC2‐1 fusion protein is highly dynamic in root hairs and at some stages confined to root hair tips and to nuclei. The agc2‐1 knockout mutation results in a reduction of root hair length, suggesting a role for AGC2‐1 in root hair growth and development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The EMBO Journal Wiley

A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis

Loading next page...
 
/lp/wiley/a-protein-kinase-target-of-a-pdk1-signalling-pathway-is-involved-in-LvgxQ51i6f
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2013 Wiley Periodicals, Inc
ISSN
0261-4189
eISSN
1460-2075
D.O.I.
10.1038/sj.emboj.7600068
Publisher site
See Article on Publisher Site

Abstract

Here we report on a lipid‐signalling pathway in plants that is downstream of phosphatidic acid and involves the Arabidopsis protein kinase, AGC2‐1, regulated by the 3′‐phosphoinositide‐dependent kinase‐1 (AtPDK1). AGC2‐1 specifically interacts with AtPDK1 through a conserved C‐terminal hydrophobic motif that leads to its phosphorylation and activation, whereas inhibition of AtPDK1 expression by RNA interference abolishes AGC2‐1 activity. Phosphatidic acid specifically binds to AtPDK1 and stimulates AGC2‐1 in an AtPDK1‐dependent manner. AtPDK1 is ubiquitously expressed in all plant tissues, whereas expression of AGC2‐1 is abundant in fast‐growing organs and dividing cells, and activated during re‐entry of cells into the cell cycle after sugar starvation‐induced G1‐phase arrest. Plant hormones, auxin and cytokinin, synergistically activate the AtPDK1‐regulated AGC2‐1 kinase, indicative of a role in growth and cell division. Cellular localisation of GFP‐AGC2‐1 fusion protein is highly dynamic in root hairs and at some stages confined to root hair tips and to nuclei. The agc2‐1 knockout mutation results in a reduction of root hair length, suggesting a role for AGC2‐1 in root hair growth and development.

Journal

The EMBO JournalWiley

Published: Feb 11, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off