A physical explanation of an observed link area‐slope relationship

A physical explanation of an observed link area‐slope relationship An observed log‐log linear relationship between channel slope and contributing area is explained by the erosional physics that lead to catchment form. It is postulated that tectonic uplift is in balance with the fluvial erosion down wasting that dominates catchment erosion, and it is shown that this relationship results in the observed log‐log linear relationship at dynamic equilibrium. In addition, it has been observed that there are deviations from this log‐log linear relationship near the catchment divide, with observed slopes being lower than those predicted from the relationship. This is explained by noting that for small areas, fluvial erosion effects are dominated by soil creep and rain splash, modeled by diffusive physics. The area at which this deviation from log‐log linearity occurs is that point on the hillslope at which diffusive physics, like soil creep and rain splash, begin to dominate fluvial erosion. These predictions are confirmed by numerical simulations using a catchment evolution model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

A physical explanation of an observed link area‐slope relationship

Loading next page...
 
/lp/wiley/a-physical-explanation-of-an-observed-link-area-slope-relationship-sv7Kac1pDg
Publisher
Wiley
Copyright
Copyright © 1991 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/91WR00937
Publisher site
See Article on Publisher Site

Abstract

An observed log‐log linear relationship between channel slope and contributing area is explained by the erosional physics that lead to catchment form. It is postulated that tectonic uplift is in balance with the fluvial erosion down wasting that dominates catchment erosion, and it is shown that this relationship results in the observed log‐log linear relationship at dynamic equilibrium. In addition, it has been observed that there are deviations from this log‐log linear relationship near the catchment divide, with observed slopes being lower than those predicted from the relationship. This is explained by noting that for small areas, fluvial erosion effects are dominated by soil creep and rain splash, modeled by diffusive physics. The area at which this deviation from log‐log linearity occurs is that point on the hillslope at which diffusive physics, like soil creep and rain splash, begin to dominate fluvial erosion. These predictions are confirmed by numerical simulations using a catchment evolution model.

Journal

Water Resources ResearchWiley

Published: Jul 1, 1991

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off