A new reliability analysis method for repairable systems with closed‐loop feedback links

A new reliability analysis method for repairable systems with closed‐loop feedback links A new reliability analysis method for repairable systems with closed‐loop feedback link (CLFL) is proposed based on GO methodology. A method for creating new function GO operators is used to describe the CLFL. Next, methods for deducing the formulae of the new GO function are proposed. In addition, a 2‐level GO model is proposed for the GO operation of repairable systems with CLFL. And then, quantitative and qualitative analysis methods for repairable systems with CLFL based on the GO method are proposed, and a process for analyzing repairable systems with CLFL based on the new GO method is formulated. Finally, we used this new GO method to analyze the reliability of an electro‐hydraulic servo speed control system and a power‐shift steering transmission control system for a heavy vehicle. To verify the feasibility, advantages, and reasonability of the new GO method, we compared our results with those obtained by fault tree analysis, Monte Carlo Simulation, and an existing GO method using serial and parallel structures to represent the CLFL. All in all, the proposed method overcomes the limitations of the existing methods as well as increasing its applicability. And it provides a new approach for reliability analysis of repairable systems with CLFL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality and Reliability Engineering International Wiley

A new reliability analysis method for repairable systems with closed‐loop feedback links

Loading next page...
 
/lp/wiley/a-new-reliability-analysis-method-for-repairable-systems-with-closed-vaOhrk8Aaf
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0748-8017
eISSN
1099-1638
D.O.I.
10.1002/qre.2255
Publisher site
See Article on Publisher Site

Abstract

A new reliability analysis method for repairable systems with closed‐loop feedback link (CLFL) is proposed based on GO methodology. A method for creating new function GO operators is used to describe the CLFL. Next, methods for deducing the formulae of the new GO function are proposed. In addition, a 2‐level GO model is proposed for the GO operation of repairable systems with CLFL. And then, quantitative and qualitative analysis methods for repairable systems with CLFL based on the GO method are proposed, and a process for analyzing repairable systems with CLFL based on the new GO method is formulated. Finally, we used this new GO method to analyze the reliability of an electro‐hydraulic servo speed control system and a power‐shift steering transmission control system for a heavy vehicle. To verify the feasibility, advantages, and reasonability of the new GO method, we compared our results with those obtained by fault tree analysis, Monte Carlo Simulation, and an existing GO method using serial and parallel structures to represent the CLFL. All in all, the proposed method overcomes the limitations of the existing methods as well as increasing its applicability. And it provides a new approach for reliability analysis of repairable systems with CLFL.

Journal

Quality and Reliability Engineering InternationalWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off