A new method for dealing with residual spatial autocorrelation in species distribution models

A new method for dealing with residual spatial autocorrelation in species distribution models Species distribution modelling (SDM) is a widely used tool and has many applications in ecology and conservation biology. Spatial autocorrelation (SAC), a pattern in which observations are related to one another by their geographic distance, is common in georeferenced ecological data. SAC in the residuals of SDMs violates the ‘independent errors’ assumption required to justify the use of statistical models in modelling species’ distributions. The autologistic modelling approach accounts for SAC by including an additional term (the autocovariate) representing the similarity between the value of the response variable at a location and neighbouring locations. However, autologistic models have been found to introduce bias in the estimation of parameters describing the influence of explanatory variables on habitat occupancy. To address this problem we developed an extension to the autologistic approach by calculating the autocovariate on SAC in residuals (the RAC approach). Performance of the new approach was tested on simulated data with a known spatial structure and on strongly autocorrelated mangrove species’ distribution data collected in northern Australia. The RAC approach was implemented as generalized linear models (GLMs) and boosted regression tree (BRT) models. We found that the BRT models with only environmental explanatory variables can account for some SAC, but applying the standard autologistic or RAC approaches further reduced SAC in model residuals and substantially improved model predictive performance. The RAC approach showed stronger inferential performance than the standard autologistic approach, as parameter estimates were more accurate and statistically significant variables were accurately identified. The new RAC approach presented here has the potential to account for spatial autocorrelation while maintaining strong predictive and inferential performance, and can be implemented across a range of modelling approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecography Wiley

A new method for dealing with residual spatial autocorrelation in species distribution models

Ecography, Volume 35 (10) – Oct 1, 2012

Loading next page...
 
/lp/wiley/a-new-method-for-dealing-with-residual-spatial-autocorrelation-in-spk3dHpm7S
Publisher
Wiley
Copyright
© 2012 The Authors
ISSN
0906-7590
eISSN
1600-0587
DOI
10.1111/j.1600-0587.2011.07138.x
Publisher site
See Article on Publisher Site

Abstract

Species distribution modelling (SDM) is a widely used tool and has many applications in ecology and conservation biology. Spatial autocorrelation (SAC), a pattern in which observations are related to one another by their geographic distance, is common in georeferenced ecological data. SAC in the residuals of SDMs violates the ‘independent errors’ assumption required to justify the use of statistical models in modelling species’ distributions. The autologistic modelling approach accounts for SAC by including an additional term (the autocovariate) representing the similarity between the value of the response variable at a location and neighbouring locations. However, autologistic models have been found to introduce bias in the estimation of parameters describing the influence of explanatory variables on habitat occupancy. To address this problem we developed an extension to the autologistic approach by calculating the autocovariate on SAC in residuals (the RAC approach). Performance of the new approach was tested on simulated data with a known spatial structure and on strongly autocorrelated mangrove species’ distribution data collected in northern Australia. The RAC approach was implemented as generalized linear models (GLMs) and boosted regression tree (BRT) models. We found that the BRT models with only environmental explanatory variables can account for some SAC, but applying the standard autologistic or RAC approaches further reduced SAC in model residuals and substantially improved model predictive performance. The RAC approach showed stronger inferential performance than the standard autologistic approach, as parameter estimates were more accurate and statistically significant variables were accurately identified. The new RAC approach presented here has the potential to account for spatial autocorrelation while maintaining strong predictive and inferential performance, and can be implemented across a range of modelling approaches.

Journal

EcographyWiley

Published: Oct 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off