A new graphical method to target carbon dioxide emission reductions by simultaneously aligning fuel switching, energy saving, investment cost, carbon credit, and payback time

A new graphical method to target carbon dioxide emission reductions by simultaneously aligning... Lowering CO2 emissions has become one of the key drivers behind the process intensification and modification in current chemical process industries. Here, we proposed a graphical method that features simultaneous correlation between CO2 emission reduction, fuel switching, energy saving, investment cost, carbon credit, and payback time. Such CO2 emission reduction can be obtained by fuel switching and/or retrofitting of the heat exchanger network. We illustrate the applications of this graphical method to the crude oil preheating train that uses furnace and the palm oil refinery that uses steam boiler. In crude oil preheat train case, for example, 55% emission reduction target can be achieved at an approximately 1.15 year of payback time from the alignment of fuel switching and energy saving. Further reduction in payback time from 1.15 to 0.91 years can be obtained by adding carbon credit contribution scheme into such alignment. This illustrates the flexibility of our graphical method to provide simple and convenient way for evaluating the technical and economic variable relationship for decision‐making. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

A new graphical method to target carbon dioxide emission reductions by simultaneously aligning fuel switching, energy saving, investment cost, carbon credit, and payback time

Loading next page...
 
/lp/wiley/a-new-graphical-method-to-target-carbon-dioxide-emission-reductions-by-YWF7qejuHn
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.3946
Publisher site
See Article on Publisher Site

Abstract

Lowering CO2 emissions has become one of the key drivers behind the process intensification and modification in current chemical process industries. Here, we proposed a graphical method that features simultaneous correlation between CO2 emission reduction, fuel switching, energy saving, investment cost, carbon credit, and payback time. Such CO2 emission reduction can be obtained by fuel switching and/or retrofitting of the heat exchanger network. We illustrate the applications of this graphical method to the crude oil preheating train that uses furnace and the palm oil refinery that uses steam boiler. In crude oil preheat train case, for example, 55% emission reduction target can be achieved at an approximately 1.15 year of payback time from the alignment of fuel switching and energy saving. Further reduction in payback time from 1.15 to 0.91 years can be obtained by adding carbon credit contribution scheme into such alignment. This illustrates the flexibility of our graphical method to provide simple and convenient way for evaluating the technical and economic variable relationship for decision‐making.

Journal

International Journal of Energy ResearchWiley

Published: Jan 25, 2018

Keywords: ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off