A Naive Bayes approach for URL classification with supervised feature selection and rejection framework

A Naive Bayes approach for URL classification with supervised feature selection and rejection... Web page classification has become a challenging task due to the exponential growth of the World Wide Web. Uniform Resource Locator (URL)‐based web page classification systems play an important role, but high accuracy may not be achievable as URL contains minimal information. Nevertheless, URL‐based classifiers along with rejection framework can be used as a first‐level filter in a multistage classifier, and a costlier feature extraction from contents may be done in later stages. However, noisy and irrelevant features present in URL demand feature selection methods for URL classification. Therefore, we propose a supervised feature selection method by which relevant URL features are identified using statistical methods. We propose a new feature weighting method for a Naive Bayes classifier by embedding the term goodness obtained from the feature selection method. We also propose a rejection framework to the Naive Bayes classifier by using posterior probability for determining the confidence score. The proposed method is evaluated on the Open Directory Project and WebKB data sets. Experimental results show that our method can be an effective first‐level filter. McNemar tests confirm that our approach significantly improves the performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Intelligence Wiley

A Naive Bayes approach for URL classification with supervised feature selection and rejection framework

Loading next page...
 
/lp/wiley/a-naive-bayes-approach-for-url-classification-with-supervised-feature-VFVlRo0ibu
Publisher
Wiley
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0824-7935
eISSN
1467-8640
D.O.I.
10.1111/coin.12158
Publisher site
See Article on Publisher Site

Abstract

Web page classification has become a challenging task due to the exponential growth of the World Wide Web. Uniform Resource Locator (URL)‐based web page classification systems play an important role, but high accuracy may not be achievable as URL contains minimal information. Nevertheless, URL‐based classifiers along with rejection framework can be used as a first‐level filter in a multistage classifier, and a costlier feature extraction from contents may be done in later stages. However, noisy and irrelevant features present in URL demand feature selection methods for URL classification. Therefore, we propose a supervised feature selection method by which relevant URL features are identified using statistical methods. We propose a new feature weighting method for a Naive Bayes classifier by embedding the term goodness obtained from the feature selection method. We also propose a rejection framework to the Naive Bayes classifier by using posterior probability for determining the confidence score. The proposed method is evaluated on the Open Directory Project and WebKB data sets. Experimental results show that our method can be an effective first‐level filter. McNemar tests confirm that our approach significantly improves the performance.

Journal

Computational IntelligenceWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off