A Molecular Budget for a Peatland Based Upon 13C Solid‐State Nuclear Magnetic Resonance

A Molecular Budget for a Peatland Based Upon 13C Solid‐State Nuclear Magnetic Resonance Peatlands can accumulate organic matter into long‐term carbon (C) storage within the soil profile. This study used solid‐state 13C nuclear magnetic resonance (13C‐NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long‐term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat‐covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C‐NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C‐C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C‐NMR budget shows that O‐alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C‐alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide‐derived carbon and 7% lignin‐derived carbon. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Biogeosciences Wiley

A Molecular Budget for a Peatland Based Upon 13C Solid‐State Nuclear Magnetic Resonance

Loading next page...
 
/lp/wiley/a-molecular-budget-for-a-peatland-based-upon-13c-solid-state-nuclear-Nq1rFRXCIU
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-8953
eISSN
2169-8961
D.O.I.
10.1002/2017JG004312
Publisher site
See Article on Publisher Site

Abstract

Peatlands can accumulate organic matter into long‐term carbon (C) storage within the soil profile. This study used solid‐state 13C nuclear magnetic resonance (13C‐NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long‐term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat‐covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C‐NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C‐C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C‐NMR budget shows that O‐alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C‐alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide‐derived carbon and 7% lignin‐derived carbon.

Journal

Journal of Geophysical Research: BiogeosciencesWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial