A layered shell element for the computation of interlaminar shear stresses and thickness normal stresses

A layered shell element for the computation of interlaminar shear stresses and thickness normal... In this contribution a layered shell element for the computation of laminated structures is proposed. The shell kinematic is based on the Reissner‐Mindlin theory with an inextensible director field. Further a multi‐field functional is introduced including the global shell equations and additional Euler‐Lagrange equations. These Euler‐Lagrange equations enforce the correct shape of warping through the thickness and lead to continuous transverse shear stresses at layer boundaries This leads to a mixed hybrid shell element, after elimination of stresses, warping and Lagrange parameters on element level. The resulting shell element has the usual 5 or 6 degrees of freedom per node, making it possible to apply this element to complex geometrical structures. An extension of the element to compute stresses in thickness direction is shown, in order to estimate and predict interlaminar failure. The computed results show good agreement with 3D solid shell models. Numerical examples for the computation of interlaminar shear and thickness normal stresses are shown and compared to results of 3D elements. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

A layered shell element for the computation of interlaminar shear stresses and thickness normal stresses

Loading next page...
 
/lp/wiley/a-layered-shell-element-for-the-computation-of-interlaminar-shear-TkidfOo33M
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710131
Publisher site
See Article on Publisher Site

Abstract

In this contribution a layered shell element for the computation of laminated structures is proposed. The shell kinematic is based on the Reissner‐Mindlin theory with an inextensible director field. Further a multi‐field functional is introduced including the global shell equations and additional Euler‐Lagrange equations. These Euler‐Lagrange equations enforce the correct shape of warping through the thickness and lead to continuous transverse shear stresses at layer boundaries This leads to a mixed hybrid shell element, after elimination of stresses, warping and Lagrange parameters on element level. The resulting shell element has the usual 5 or 6 degrees of freedom per node, making it possible to apply this element to complex geometrical structures. An extension of the element to compute stresses in thickness direction is shown, in order to estimate and predict interlaminar failure. The computed results show good agreement with 3D solid shell models. Numerical examples for the computation of interlaminar shear and thickness normal stresses are shown and compared to results of 3D elements. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off