A global perspective of regional vegetation and hydrologic sensitivities from climatic change

A global perspective of regional vegetation and hydrologic sensitivities from climatic change Abstract. A biogeographic model, MAPSS (Mapped Atmosphere‐Plant‐Soil System), predicts changes in vegetation leaf area index (LAI), site water balance and runoff, as well as changes in biome boundaries. Potential scenarios of global and regional equilibrium changes in LAI and terrestrial water balance under 2 x CO2 climate from five different general circulation models (GCMs) are presented. Regional patterns of vegetation change and annual runoff are surprisingly consistent among the five GCM scenarios, given the general lack of consistency in predicted changes in regional precipitation patterns. Two factors contribute to the consistency among the GCMs of the regional ecological impacts of climatic change: (1) regional, temperature‐induced increases in potential evapo‐transpiration (PET) tend to more than offset regional increases in precipitation; and (2) the interplay between the general circulation and the continental margins and mountain ranges produces a fairly stable pattern of regionally specific sensitivity to climatic change. Two areas exhibiting among the greatest sensitivity to drought‐induced forest decline are eastern North America and eastern Europe to western Russia. Regional runoff patterns exhibit much greater spatial variation in the sign of the response than do the LAI changes, even though they are deterministically linked in the model. Uncertainties with respect to PET or vegetation water use efficiency calculations can alter the simulated sign of regional responses, but the relative responses of adjacent regions appear to be largely a function of the background climate, rather than the vagaries of the GCMs, and are intrinsic to the landscape. Thus, spatial uncertainty maps can be drawn even under the current generation of GCMs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

A global perspective of regional vegetation and hydrologic sensitivities from climatic change

Loading next page...
 
/lp/wiley/a-global-perspective-of-regional-vegetation-and-hydrologic-bfu8LTcdkw
Publisher
Wiley
Copyright
1994 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
D.O.I.
10.2307/3235885
Publisher site
See Article on Publisher Site

Abstract

Abstract. A biogeographic model, MAPSS (Mapped Atmosphere‐Plant‐Soil System), predicts changes in vegetation leaf area index (LAI), site water balance and runoff, as well as changes in biome boundaries. Potential scenarios of global and regional equilibrium changes in LAI and terrestrial water balance under 2 x CO2 climate from five different general circulation models (GCMs) are presented. Regional patterns of vegetation change and annual runoff are surprisingly consistent among the five GCM scenarios, given the general lack of consistency in predicted changes in regional precipitation patterns. Two factors contribute to the consistency among the GCMs of the regional ecological impacts of climatic change: (1) regional, temperature‐induced increases in potential evapo‐transpiration (PET) tend to more than offset regional increases in precipitation; and (2) the interplay between the general circulation and the continental margins and mountain ranges produces a fairly stable pattern of regionally specific sensitivity to climatic change. Two areas exhibiting among the greatest sensitivity to drought‐induced forest decline are eastern North America and eastern Europe to western Russia. Regional runoff patterns exhibit much greater spatial variation in the sign of the response than do the LAI changes, even though they are deterministically linked in the model. Uncertainties with respect to PET or vegetation water use efficiency calculations can alter the simulated sign of regional responses, but the relative responses of adjacent regions appear to be largely a function of the background climate, rather than the vagaries of the GCMs, and are intrinsic to the landscape. Thus, spatial uncertainty maps can be drawn even under the current generation of GCMs.

Journal

Journal of Vegetation ScienceWiley

Published: Oct 1, 1994

References

  • Catchment‐scale evaporation and the atmospheric boundary layer
    Brutsaert, Brutsaert
  • The interaction of rising CO 2 and temperatures with water use efficiency
    Eamus, Eamus
  • Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance
    Marks, Marks; Dozier, Dozier
  • Sensitivity of some potential evapotranspiration estimation methods to climate change
    McKenney, McKenney; Rosenberg, Rosenberg
  • The use of stereo, horizontal, ground level orifice gages to determine a rainfall‐elevation relationship
    Sevruk, Sevruk

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off