A framework for classifying and comparing distributed hillslope and catchment hydrologic models

A framework for classifying and comparing distributed hillslope and catchment hydrologic models The term distributed model is widely applied to describe hydrologic models that can simulate broad classes of pathways of water through space, e.g., overland flow, saturated groundwater flow, and/or unsaturated flow in the vadose zone. Because existing distributed modeling approaches differ substantially from one another, we present a common framework from which to compare the many existing hillslope‐ and catchment‐scale models. To provide a context for understanding the structure of the current generation of distributed models, we briefly review the history of hydrologic modeling. We define relevant modeling terms and describe common physical, analytical, and empirical approaches for representing hydrologic processes in the subsurface, surface, atmosphere, and biosphere. We then introduce criteria for classifying existing distributed models based on the nature of their process representation, solution scheme, coupling between the surface and subsurface, and treatment of space and time. On the basis of these criteria we describe 19 representative distributed models and discuss how process, scale, solution, and logistical considerations can be incorporated into model selection and application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

A framework for classifying and comparing distributed hillslope and catchment hydrologic models

Loading next page...
 
/lp/wiley/a-framework-for-classifying-and-comparing-distributed-hillslope-and-gANnZYvLA0
Publisher
Wiley
Copyright
Copyright © 2007 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/2006WR005370
Publisher site
See Article on Publisher Site

Abstract

The term distributed model is widely applied to describe hydrologic models that can simulate broad classes of pathways of water through space, e.g., overland flow, saturated groundwater flow, and/or unsaturated flow in the vadose zone. Because existing distributed modeling approaches differ substantially from one another, we present a common framework from which to compare the many existing hillslope‐ and catchment‐scale models. To provide a context for understanding the structure of the current generation of distributed models, we briefly review the history of hydrologic modeling. We define relevant modeling terms and describe common physical, analytical, and empirical approaches for representing hydrologic processes in the subsurface, surface, atmosphere, and biosphere. We then introduce criteria for classifying existing distributed models based on the nature of their process representation, solution scheme, coupling between the surface and subsurface, and treatment of space and time. On the basis of these criteria we describe 19 representative distributed models and discuss how process, scale, solution, and logistical considerations can be incorporated into model selection and application.

Journal

Water Resources ResearchWiley

Published: May 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off