A desirability function method for optimizing mean and variability of multiple responses using a posterior preference articulation approach

A desirability function method for optimizing mean and variability of multiple responses using a... A desirability function approach has been widely used in multi‐response optimization due to its simplicity. Most of the existing desirability function‐based methods assume that the variability of the response variables is stable; thus, they focus mainly on the optimization of the mean of multiple responses. However, this stable variability assumption often does not apply in practical situations; thus, the quality of the product or process can be severely degraded due to the high variability of multiple responses. In this regard, we propose a new desirability function method to simultaneously optimize both the mean and variability of multiple responses. In particular, the proposed method uses a posterior preference articulation approach, which has an advantage in investigating tradeoffs between the mean and variability of multiple responses. It is expected that process engineers can use this method to better understand the tradeoffs, thereby obtaining a satisfactory compromise solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality and Reliability Engineering International Wiley

A desirability function method for optimizing mean and variability of multiple responses using a posterior preference articulation approach

Loading next page...
 
/lp/wiley/a-desirability-function-method-for-optimizing-mean-and-variability-of-CYPrepp5hQ
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0748-8017
eISSN
1099-1638
D.O.I.
10.1002/qre.2258
Publisher site
See Article on Publisher Site

Abstract

A desirability function approach has been widely used in multi‐response optimization due to its simplicity. Most of the existing desirability function‐based methods assume that the variability of the response variables is stable; thus, they focus mainly on the optimization of the mean of multiple responses. However, this stable variability assumption often does not apply in practical situations; thus, the quality of the product or process can be severely degraded due to the high variability of multiple responses. In this regard, we propose a new desirability function method to simultaneously optimize both the mean and variability of multiple responses. In particular, the proposed method uses a posterior preference articulation approach, which has an advantage in investigating tradeoffs between the mean and variability of multiple responses. It is expected that process engineers can use this method to better understand the tradeoffs, thereby obtaining a satisfactory compromise solution.

Journal

Quality and Reliability Engineering InternationalWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off