A coupled channel network growth and hillslope evolution model: 2. Nondimensionalization and applications

A coupled channel network growth and hillslope evolution model: 2. Nondimensionalization and... This paper explores the scaling and similitude properties of the system of governing equations for a catchment evolution model that was presented in an accompanying paper (Willgoose et al., this issue). Similitude is an important concept that allows the quantification of the similarities of, and differences between, two catchments. Through the use of a small number of nondimensional numbers the governing physics of the channel network and surrounding hillslopes in a catchment may be summarized. These nondimensional numbers lead to similarity conditions that allow for the quantitative comparison of data between field catchments and between the field scale and the controlled experimental scale. Derived relationships are presented for the drainage density of the channel network and the rate at which the network grows, parameterized using the nondimensional numbers. Drainage density is shown to be mostly a function of the hillslope channel initiation number that relates the slopes and lengths of hillslopes in a very simple fashion. Finally, it is shown that the form of a channel network is very sensitive to initial conditions. Though the exact form of the network and the hillslopes may vary greatly, along with their topological statistics, physical statistics such as drainage density are only slightly affected. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

A coupled channel network growth and hillslope evolution model: 2. Nondimensionalization and applications

Loading next page...
 
/lp/wiley/a-coupled-channel-network-growth-and-hillslope-evolution-model-2-9nFXre2BpV
Publisher
Wiley
Copyright
Copyright © 1991 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
DOI
10.1029/91WR00936
Publisher site
See Article on Publisher Site

Abstract

This paper explores the scaling and similitude properties of the system of governing equations for a catchment evolution model that was presented in an accompanying paper (Willgoose et al., this issue). Similitude is an important concept that allows the quantification of the similarities of, and differences between, two catchments. Through the use of a small number of nondimensional numbers the governing physics of the channel network and surrounding hillslopes in a catchment may be summarized. These nondimensional numbers lead to similarity conditions that allow for the quantitative comparison of data between field catchments and between the field scale and the controlled experimental scale. Derived relationships are presented for the drainage density of the channel network and the rate at which the network grows, parameterized using the nondimensional numbers. Drainage density is shown to be mostly a function of the hillslope channel initiation number that relates the slopes and lengths of hillslopes in a very simple fashion. Finally, it is shown that the form of a channel network is very sensitive to initial conditions. Though the exact form of the network and the hillslopes may vary greatly, along with their topological statistics, physical statistics such as drainage density are only slightly affected.

Journal

Water Resources ResearchWiley

Published: Jul 1, 1991

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off