A contour‐based topographic model for hydrological and ecological applications

A contour‐based topographic model for hydrological and ecological applications A digital model for discretizing three‐dimensional terrain into small irregularly shaped polygons or elements based on contour lines and their orthogonals is described. From this subdivision the model estimates a number of topographic attributes for each element including the total upslope contributing area, element area, slope, and aspect. This form of discretization of a catchment produces natural units for problems involving water flow as either a surface or subsurface flow phenomenon. The model therefore has wide potential application for representing the three‐dimensionality of natural terrain and water flow processes in the fields of hydrology, sedimentology, and geomorphology. Three example applications are presented and discussed. They are the prediction of zones of surface saturation, the prediction of the distribution of potential daily solar radiation, and the prediction of zones of erosion and deposition in a catchment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth Surface Processes and Landforms Wiley

A contour‐based topographic model for hydrological and ecological applications

Loading next page...
 
/lp/wiley/a-contour-based-topographic-model-for-hydrological-and-ecological-Eb58aNWOW6
Publisher
Wiley
Copyright
Copyright © 1988 John Wiley & Sons, Ltd
ISSN
0197-9337
eISSN
1096-9837
D.O.I.
10.1002/esp.3290130404
Publisher site
See Article on Publisher Site

Abstract

A digital model for discretizing three‐dimensional terrain into small irregularly shaped polygons or elements based on contour lines and their orthogonals is described. From this subdivision the model estimates a number of topographic attributes for each element including the total upslope contributing area, element area, slope, and aspect. This form of discretization of a catchment produces natural units for problems involving water flow as either a surface or subsurface flow phenomenon. The model therefore has wide potential application for representing the three‐dimensionality of natural terrain and water flow processes in the fields of hydrology, sedimentology, and geomorphology. Three example applications are presented and discussed. They are the prediction of zones of surface saturation, the prediction of the distribution of potential daily solar radiation, and the prediction of zones of erosion and deposition in a catchment.

Journal

Earth Surface Processes and LandformsWiley

Published: Jun 1, 1988

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off