A comparison of statistical approaches for modelling fish species distributions

A comparison of statistical approaches for modelling fish species distributions SUMMARY 1. The prediction of species distributions is of primary importance in ecology and conservation biology. Statistical models play an important role in this regard; however, researchers have little guidance when choosing between competing methodologies because few comparative studies have been conducted. 2. We provide a comprehensive comparison of traditional and alternative techniques for predicting species distributions using logistic regression analysis, linear discriminant analysis, classification trees and artificial neural networks to model: (1) the presence/absence of 27 fish species as a function of habitat conditions in 286 temperate lakes located in south‐central Ontario, Canada and (2) simulated data sets exhibiting deterministic, linear and non‐linear species response curves. 3. Detailed evaluation of model predictive power showed that approaches produced species models that differed in overall correct classification, specificity (i.e. ability to correctly predict species absence) and sensitivity (i.e. ability to correctly predict speciespresence) and in terms of which of the study lakes they correctly classified. Onaverage, neural networks outperformed the other modelling approaches, although all approaches predicted species presence/absence with moderate to excellent success. 4. Based on simulated non‐linear data, classification trees and neural networks greatly outperformed traditional approaches, whereas all approaches exhibited similar correct classification rates when modelling simulated linear data. 5. Detailed evaluation of model explanatory insight showed that the relative importance of the habitat variables in the species models varied among the approaches, where habitat variable importance was similar among approaches for some species and very different for others. 6. In general, differences in predictive power (both correct classification rate and identity of the lakes correctly classified) among the approaches corresponded with differences in habitat variable importance, suggesting that non‐linear modelling approaches (i.e. classification trees and neural networks) are better able to capture and model complex, non‐linear patterns found in ecological data. The results from the comparisons using simulated data further support this notion. 7. By employing parallel modelling approaches with the same set of data and focusing on comparing multiple metrics of predictive performance, researchers can begin to choose predictive models that not only provide the greatest predictive power, but also best fit the proposed application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Freshwater Biology Wiley

A comparison of statistical approaches for modelling fish species distributions

Freshwater Biology, Volume 47 (10) – Oct 1, 2002

Loading next page...
 
/lp/wiley/a-comparison-of-statistical-approaches-for-modelling-fish-species-Uh680ou6KS
Publisher
Wiley
Copyright
Copyright © 2002 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0046-5070
eISSN
1365-2427
DOI
10.1046/j.1365-2427.2002.00945.x
Publisher site
See Article on Publisher Site

Abstract

SUMMARY 1. The prediction of species distributions is of primary importance in ecology and conservation biology. Statistical models play an important role in this regard; however, researchers have little guidance when choosing between competing methodologies because few comparative studies have been conducted. 2. We provide a comprehensive comparison of traditional and alternative techniques for predicting species distributions using logistic regression analysis, linear discriminant analysis, classification trees and artificial neural networks to model: (1) the presence/absence of 27 fish species as a function of habitat conditions in 286 temperate lakes located in south‐central Ontario, Canada and (2) simulated data sets exhibiting deterministic, linear and non‐linear species response curves. 3. Detailed evaluation of model predictive power showed that approaches produced species models that differed in overall correct classification, specificity (i.e. ability to correctly predict species absence) and sensitivity (i.e. ability to correctly predict speciespresence) and in terms of which of the study lakes they correctly classified. Onaverage, neural networks outperformed the other modelling approaches, although all approaches predicted species presence/absence with moderate to excellent success. 4. Based on simulated non‐linear data, classification trees and neural networks greatly outperformed traditional approaches, whereas all approaches exhibited similar correct classification rates when modelling simulated linear data. 5. Detailed evaluation of model explanatory insight showed that the relative importance of the habitat variables in the species models varied among the approaches, where habitat variable importance was similar among approaches for some species and very different for others. 6. In general, differences in predictive power (both correct classification rate and identity of the lakes correctly classified) among the approaches corresponded with differences in habitat variable importance, suggesting that non‐linear modelling approaches (i.e. classification trees and neural networks) are better able to capture and model complex, non‐linear patterns found in ecological data. The results from the comparisons using simulated data further support this notion. 7. By employing parallel modelling approaches with the same set of data and focusing on comparing multiple metrics of predictive performance, researchers can begin to choose predictive models that not only provide the greatest predictive power, but also best fit the proposed application.

Journal

Freshwater BiologyWiley

Published: Oct 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off