A bootstrap resampling procedure for model building: Application to the cox regression model

A bootstrap resampling procedure for model building: Application to the cox regression model A common problem in the statistical analysis of clinical studies is the selection of those variables in the framework of a regression model which might influence the outcome variable. Stepwise methods have been available for a long time, but as with many other possible strategies, there is a lot of criticism of their use. Investigations of the stability of a selected model are often called for, but usually are not carried out in a systematic way. Since analytical approaches are extremely difficult, data‐dependent methods might be an useful alternative. Based on a bootstrap resampling procedure, Chen and George investigated the stability of a stepwise selection procedure in the framework of the Cox proportional hazard regression model. We extend their proposal and develop a bootstrap‐model selection procedure, combining the bootstrap method with existing selection techniques such as stepwise methods. We illustrate the proposed strategy in the process of model building by using data from two cancer clinical trials featuring two different situations commonly arising in clinical research. In a brain tumour study the adjustment for covariates in an overall treatment comparison is of primary interest calling for the selection of even ‘mild’ effects. In a prostate cancer study we concentrate on the analysis of treatment‐covariate interactions demanding that only ‘strong’ effects should be selected. Both variants of the strategy will be demonstrated analysing the clinical trials with a Cox model, but they can be applied in other types of regression with obvious and straightforward modifications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics in Medicine Wiley

A bootstrap resampling procedure for model building: Application to the cox regression model

Loading next page...
 
/lp/wiley/a-bootstrap-resampling-procedure-for-model-building-application-to-the-Jg00kB7RJ9
Publisher
Wiley
Copyright
Copyright © 1992 John Wiley & Sons, Ltd.
ISSN
0277-6715
eISSN
1097-0258
D.O.I.
10.1002/sim.4780111607
Publisher site
See Article on Publisher Site

Abstract

A common problem in the statistical analysis of clinical studies is the selection of those variables in the framework of a regression model which might influence the outcome variable. Stepwise methods have been available for a long time, but as with many other possible strategies, there is a lot of criticism of their use. Investigations of the stability of a selected model are often called for, but usually are not carried out in a systematic way. Since analytical approaches are extremely difficult, data‐dependent methods might be an useful alternative. Based on a bootstrap resampling procedure, Chen and George investigated the stability of a stepwise selection procedure in the framework of the Cox proportional hazard regression model. We extend their proposal and develop a bootstrap‐model selection procedure, combining the bootstrap method with existing selection techniques such as stepwise methods. We illustrate the proposed strategy in the process of model building by using data from two cancer clinical trials featuring two different situations commonly arising in clinical research. In a brain tumour study the adjustment for covariates in an overall treatment comparison is of primary interest calling for the selection of even ‘mild’ effects. In a prostate cancer study we concentrate on the analysis of treatment‐covariate interactions demanding that only ‘strong’ effects should be selected. Both variants of the strategy will be demonstrated analysing the clinical trials with a Cox model, but they can be applied in other types of regression with obvious and straightforward modifications.

Journal

Statistics in MedicineWiley

Published: Jan 1, 1992

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off