3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur Batteries

3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur... In this work, unique porous carbon sheets (PCSs) are developed via a facile synthesis. The obtained PCS delivers long‐range conductive framework, abundant active interfaces, rich element doping, and notably a high inner porosity that builds up an admirable 3D network for multidirectional ion transfer. Such unique architecture and surface chemistry enable ultrafast sulfur electrochemistry as well as high‐efficiency inhibition on polysulfide shuttling via the dually physical and chemical sulfur confinement. The PCS‐based sulfur electrodes achieve superb rate capability up to 10 C, outstanding cyclability over 1000 cycles, and high areal capacity of 4.8 mA h cm−2. This work offers an appealing model of material engineering for fast and reliable lithium–sulfur batteries, as well as guidance for rational structural design in extended energy storage and conversion systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur Batteries

Loading next page...
 
/lp/wiley/3d-porous-carbon-sheets-with-multidirectional-ion-pathways-for-fast-nK1DXQnYuJ
Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
D.O.I.
10.1002/aenm.201702381
Publisher site
See Article on Publisher Site

Abstract

In this work, unique porous carbon sheets (PCSs) are developed via a facile synthesis. The obtained PCS delivers long‐range conductive framework, abundant active interfaces, rich element doping, and notably a high inner porosity that builds up an admirable 3D network for multidirectional ion transfer. Such unique architecture and surface chemistry enable ultrafast sulfur electrochemistry as well as high‐efficiency inhibition on polysulfide shuttling via the dually physical and chemical sulfur confinement. The PCS‐based sulfur electrodes achieve superb rate capability up to 10 C, outstanding cyclability over 1000 cycles, and high areal capacity of 4.8 mA h cm−2. This work offers an appealing model of material engineering for fast and reliable lithium–sulfur batteries, as well as guidance for rational structural design in extended energy storage and conversion systems.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off