Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

X-cells in the cat retina: relationships between the morphology and physiology of a class of cat retinal ganglion cells

X-cells in the cat retina: relationships between the morphology and physiology of a class of cat... Abstract 1. The morphology of 21 physiologically characterized X-cells in the cat retina was studied using intracellular recording and injection with horseradish peroxidase. The data from these experiments were used to test directly the relationships between specific structural and functional characteristics of a sample of individual retinal ganglion cells of the same anatomical and physiological class. Where possible, the response properties of 53 other retinal X-cells that were not successfully injected and recovered are compared with those of the labeled sample. These comparisons, which included conduction velocities (both intraretinal and extraretinal) and receptive-field size, indicate that the labeled X-cells are a representative sample of the population of retinal X-cells at corresponding eccentricities. 2. The somata of this group of injected retinal X-cells increase in size with increasing distance from the area centralis up to 13 degrees eccentricity (the greatest distance from the area centralis at which an X-cell was injected and recovered). The soma sizes of this sample of retinal ganglion cells range from 143.5 to 529.9 micron 2 (diam = 13.5-26.0 micron). Comparison of the soma sizes of the injected and recovered retinal X-cells with those of 300 Nissl-stained neurons at comparable eccentricities in the same retinae indicate that the injected sample had soma sizes that are consistent with their classification as "medium-sized" retinal ganglion cells (5, 69, 74). 3. All of the physiologically characterized retinal X-cells of this study have the compact dendritic arbors described to the morphological class of retinal ganglion cell called beta-cells by Boycott and Wassle (5). The dendrites of some of these neurons have many spinelike appendages, whereas those of other cells are nearly appendage free. We found no obvious correlation between the presence of dendritic appendages and any specific response characteristic ("ON-" or "OFF-center", etc). Like the size of the soma, both the diameter of the dendritic arbors of these cells, and the number of primary dendrites (those dendrites that originate directly from the soma), increase with increasing distance from the area centralis. 4. Since both morphological and physiological data were obtained for these neurons, it is possible to describe the relationship between the size of the receptive-field center and the diameter of the dendritic arbor for individual retinal ganglion cells. These comparisons show that the relationship between the anatomical measure and this response parameter for the entire sample of labeled X-cells is not as strong as had previously been suggested.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1987 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

X-cells in the cat retina: relationships between the morphology and physiology of a class of cat retinal ganglion cells

Journal of Neurophysiology , Volume 58 (5): 940 – Nov 1, 1987

Loading next page...
 
/lp/the-american-physiological-society/x-cells-in-the-cat-retina-relationships-between-the-morphology-and-gNVJQuErBS

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1987 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. The morphology of 21 physiologically characterized X-cells in the cat retina was studied using intracellular recording and injection with horseradish peroxidase. The data from these experiments were used to test directly the relationships between specific structural and functional characteristics of a sample of individual retinal ganglion cells of the same anatomical and physiological class. Where possible, the response properties of 53 other retinal X-cells that were not successfully injected and recovered are compared with those of the labeled sample. These comparisons, which included conduction velocities (both intraretinal and extraretinal) and receptive-field size, indicate that the labeled X-cells are a representative sample of the population of retinal X-cells at corresponding eccentricities. 2. The somata of this group of injected retinal X-cells increase in size with increasing distance from the area centralis up to 13 degrees eccentricity (the greatest distance from the area centralis at which an X-cell was injected and recovered). The soma sizes of this sample of retinal ganglion cells range from 143.5 to 529.9 micron 2 (diam = 13.5-26.0 micron). Comparison of the soma sizes of the injected and recovered retinal X-cells with those of 300 Nissl-stained neurons at comparable eccentricities in the same retinae indicate that the injected sample had soma sizes that are consistent with their classification as "medium-sized" retinal ganglion cells (5, 69, 74). 3. All of the physiologically characterized retinal X-cells of this study have the compact dendritic arbors described to the morphological class of retinal ganglion cell called beta-cells by Boycott and Wassle (5). The dendrites of some of these neurons have many spinelike appendages, whereas those of other cells are nearly appendage free. We found no obvious correlation between the presence of dendritic appendages and any specific response characteristic ("ON-" or "OFF-center", etc). Like the size of the soma, both the diameter of the dendritic arbors of these cells, and the number of primary dendrites (those dendrites that originate directly from the soma), increase with increasing distance from the area centralis. 4. Since both morphological and physiological data were obtained for these neurons, it is possible to describe the relationship between the size of the receptive-field center and the diameter of the dendritic arbor for individual retinal ganglion cells. These comparisons show that the relationship between the anatomical measure and this response parameter for the entire sample of labeled X-cells is not as strong as had previously been suggested.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1987 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Nov 1, 1987

There are no references for this article.