Voltage-clamp analysis of currents produced by glutamate and some glutamate analogues on horizontal cells isolated from the catfish retina

Voltage-clamp analysis of currents produced by glutamate and some glutamate analogues on... Abstract Horizontal cells isolated from the catfish retina were exposed to radiolabeled glutamate, glycine, gamma-aminobutyric acid (GABA), and sucrose to determine if the enzymatic dissociation procedure altered the high-affinity uptake mechanism for GABA and generally reduced membrane selectivity. As in the intact retina, isolated cells could transport GABA but not the other substances. The horizontal cells were voltage clamped using a single low-resistance patch-type electrode. The acidic amino acid L-glutamate, and its analogues kainate and quisqualate, were applied to the cell by pressure ejection from a nearby pipette. All three agonists produced inward currents that reversed near O mV. Quisqualate produced a current with a similar time course as glutamate, but the time course of the response to kainate was faster. The agonists N-methyl-D-aspartate and L-aspartate had little effect on the membrane conductance. The current-to-voltage (I-V) relationship for all three agonists was nonlinear when the membrane potential was hyperpolarized. The nonlinearity was, at least in part, a result of the decreased response to the three agonists. Removal of Mg did not alter this nonlinear relationship. When the inward potassium rectifier was blocked with 100 microM Ba, the response to glutamate was increased compared with the control experiment before block by barium; however, the I-V relationship was still highly nonlinear. Thus glutamate block of the inward potassium current cannot account entirely for the nonlinear I-V. The increase in membrane permeability to specific ions in the presence of an agonist was determined by ion substitution experiments and measuring the shift in the reversal potential. The three agonists appear to increase the membrane permeability to cations but not to anions. The amino acid antagonists cis-2,3-piperidine dicarboxylic acid (PDA) and D-glutamyl glycine (DGG) were bath applied to test their ability to block the depolarizing effects of glutamate. DGG had no measureable effect at 100 microM concentration, whereas PDA reversibly reduced the glutamate response at 1 mM concentration although block was incomplete. Isolated horizontal cells responded to bath-applied glutamate in concentrations of 10-500 microM. In concentrations of glutamate greater than 50 microM, when the membrane potential was held at the resting potential, the inward current reached a maximum followed by a decrease to a steady-state level. This apparent time-dependent desensitization at high agonist concentrations was at least partially removed when Mg was removed from the bathing solution.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1986 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Voltage-clamp analysis of currents produced by glutamate and some glutamate analogues on horizontal cells isolated from the catfish retina

Loading next page...
 
/lp/the-american-physiological-society/voltage-clamp-analysis-of-currents-produced-by-glutamate-and-some-dAq21uBq4m
Publisher
The American Physiological Society
Copyright
Copyright © 1986 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract Horizontal cells isolated from the catfish retina were exposed to radiolabeled glutamate, glycine, gamma-aminobutyric acid (GABA), and sucrose to determine if the enzymatic dissociation procedure altered the high-affinity uptake mechanism for GABA and generally reduced membrane selectivity. As in the intact retina, isolated cells could transport GABA but not the other substances. The horizontal cells were voltage clamped using a single low-resistance patch-type electrode. The acidic amino acid L-glutamate, and its analogues kainate and quisqualate, were applied to the cell by pressure ejection from a nearby pipette. All three agonists produced inward currents that reversed near O mV. Quisqualate produced a current with a similar time course as glutamate, but the time course of the response to kainate was faster. The agonists N-methyl-D-aspartate and L-aspartate had little effect on the membrane conductance. The current-to-voltage (I-V) relationship for all three agonists was nonlinear when the membrane potential was hyperpolarized. The nonlinearity was, at least in part, a result of the decreased response to the three agonists. Removal of Mg did not alter this nonlinear relationship. When the inward potassium rectifier was blocked with 100 microM Ba, the response to glutamate was increased compared with the control experiment before block by barium; however, the I-V relationship was still highly nonlinear. Thus glutamate block of the inward potassium current cannot account entirely for the nonlinear I-V. The increase in membrane permeability to specific ions in the presence of an agonist was determined by ion substitution experiments and measuring the shift in the reversal potential. The three agonists appear to increase the membrane permeability to cations but not to anions. The amino acid antagonists cis-2,3-piperidine dicarboxylic acid (PDA) and D-glutamyl glycine (DGG) were bath applied to test their ability to block the depolarizing effects of glutamate. DGG had no measureable effect at 100 microM concentration, whereas PDA reversibly reduced the glutamate response at 1 mM concentration although block was incomplete. Isolated horizontal cells responded to bath-applied glutamate in concentrations of 10-500 microM. In concentrations of glutamate greater than 50 microM, when the membrane potential was held at the resting potential, the inward current reached a maximum followed by a decrease to a steady-state level. This apparent time-dependent desensitization at high agonist concentrations was at least partially removed when Mg was removed from the bathing solution.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1986 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Jul 1, 1986

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off