TGF-β activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation

TGF-β activation impairs fibroblast ability to support adult lung epithelial progenitor cell... Transforming growth factor-β (TGF-β)-induced fibroblast-to-myofibroblast differentiation contributes to remodeling in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, but whether this impacts the ability of fibroblasts to support lung epithelial repair remains little explored. We pretreated human lung fibroblasts [primary (phFB) or MRC5 cells] with recombinant human TGF-β to induce myofibroblast differentiation, then cocultured them with adult mouse lung epithelial cell adhesion molecule-positive cells (EpCAM+) to investigate their capacity to support epithelial organoid formation in vitro. While control phFB and MRC5 lung fibroblasts supported organoid formation of mouse EpCAM+ cells, TGF-β pretreatment of both phFB and MRC5 impaired organoid-supporting ability. We performed RNA sequencing of TGF-β-treated phFB, which revealed altered expression of key Wnt signaling pathway components and Wnt/β-catenin target genes, and modulated expression of secreted factors involved in mesenchymal-epithelial signaling. TGF-β profoundly skewed the transcriptional program induced by the Wnt/β-catenin activator CHIR99021. Supplementing organoid culture media recombinant hepatocyte growth factor or fibroblast growth factor 7 promoted organoid formation when using TGF-β pretreated fibroblasts. In conclusion, TGF-β-induced myofibroblast differentiation results in Wnt/β-catenin pathway skewing and impairs fibroblast ability to support epithelial repair likely through multiple mechanisms, including modulation of secreted growth factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Lung Cellular and Molecular Physiology The American Physiological Society

TGF-β activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation

Loading next page...
 
/lp/the-american-physiological-society/tgf-activation-impairs-fibroblast-ability-to-support-adult-lung-cJBVfiEUNm
Publisher site
See Article on Publisher Site

Abstract

Transforming growth factor-β (TGF-β)-induced fibroblast-to-myofibroblast differentiation contributes to remodeling in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, but whether this impacts the ability of fibroblasts to support lung epithelial repair remains little explored. We pretreated human lung fibroblasts [primary (phFB) or MRC5 cells] with recombinant human TGF-β to induce myofibroblast differentiation, then cocultured them with adult mouse lung epithelial cell adhesion molecule-positive cells (EpCAM+) to investigate their capacity to support epithelial organoid formation in vitro. While control phFB and MRC5 lung fibroblasts supported organoid formation of mouse EpCAM+ cells, TGF-β pretreatment of both phFB and MRC5 impaired organoid-supporting ability. We performed RNA sequencing of TGF-β-treated phFB, which revealed altered expression of key Wnt signaling pathway components and Wnt/β-catenin target genes, and modulated expression of secreted factors involved in mesenchymal-epithelial signaling. TGF-β profoundly skewed the transcriptional program induced by the Wnt/β-catenin activator CHIR99021. Supplementing organoid culture media recombinant hepatocyte growth factor or fibroblast growth factor 7 promoted organoid formation when using TGF-β pretreated fibroblasts. In conclusion, TGF-β-induced myofibroblast differentiation results in Wnt/β-catenin pathway skewing and impairs fibroblast ability to support epithelial repair likely through multiple mechanisms, including modulation of secreted growth factors.

Journal

AJP - Lung Cellular and Molecular PhysiologyThe American Physiological Society

Published: Jul 1, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off