“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes

Abstract With an in vitro model using enclosed intrahepatic bile duct units (IBDUs) isolated from wild-type and somatostatin receptor (SSTR) subtype 2 knockout mice, we tested the effects of somatostatin, secretin, and a selective SSTR2 agonist (L-779976) on fluid movement across the bile duct epithelial cell layer. By RT-PCR, four of five known subtypes of SSTRs (SSTR1, SSTR2A/2B, SSTR3, and SSTR4, but not SSTR5) were detected in cholangiocytes in wild-type mice. In contrast, SSTR2A/2B were completely depleted in the SSTR2 knockout mice whereas SSTR1, SSTR3 and SSTR4 were expressed in these cholangiocytes. Somatostatin induced a decrease of luminal area of IBDUs isolated from wild-type mice, reflecting net fluid absorption; L-779976 also induced a comparable decrease of luminal area. No significant decrease of luminal area by either somatostatin or L-779976 was observed in IBDUs from SSTR2 knockout mice. Secretin, a choleretic hormone, induced a significant increase of luminal area of IBDUs of wild-type mice, reflecting net fluid secretion; somatostatin and L-779976 inhibited ( P < 0.01) secretin-induced fluid secretion. The inhibitory effect of both somatostatin and L-779976 on secretin-induced IBDU secretion was absent in IBDUs of SSTR2 knockout mice. Somatostatin induced an increase of intracellular cGMP and inhibited secretin-stimulated cAMP synthesis in cholangiocytes; depletion of SSTR2 blocked these effects of somatostatin. These data suggest that somatostatin regulates ductal bile formation in mice not only by inhibition of ductal fluid secretion but also by stimulation of ductal fluid absorption via interacting with SSTR2 on cholangiocytes, a process involving the intracellular cAMP/cGMP second messengers. bile flow biliary secretion cholestasis secretin receptors Footnotes This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grants DK-24031 and DK-57993 (to N. F. LaRusso), Deutsche Forschungsgemeinschaft (Str558/2–1, to M. Z. Strowski), the American Liver Foundation (to A.-Y. Gong), and the Mayo Foundation. Address for reprint requests and other correspondence: N. F. LaRusso, Center for Basic Research in Digestive Diseases, Mayo Clinic, 200 First St., SW, Rochester, MN 55905 (E-mail: larusso.nicholas@mayo.edu ). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 10.1152/ajpcell.00313.2002 Copyright © 2003 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Cell Physiology The American Physiological Society

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.