Reward-Predicting Activity of Dopamine and Caudate Neurons—A Possible Mechanism of Motivational Control of Saccadic Eye Movement

Reward-Predicting Activity of Dopamine and Caudate Neurons—A Possible Mechanism of Motivational... Recent studies have suggested that the basal ganglia are related to motivational control of behavior. To study how motivational signals modulate motor signals in the basal ganglia, we examined activity of midbrain dopamine (DA) neurons and caudate (CD) projection neurons while monkeys were performing a one-direction-rewarded version (1DR) of memory-guided saccade task. The cue stimulus indicated the goal position for an upcoming saccade and the presence or absence of reward after the trial. Among four monkeys we studied, three were sensitive to reward such that saccade velocity was significantly higher in the rewarded trials than in the nonrewarded trials; one monkey was insensitive to reward. In the reward-sensitive monkeys, both DA and CD neurons responded differentially to reward-indicating and no-reward-indicating cues. Thus DA neurons responded with excitation to a reward-indicating cue and with inhibition to a no-reward-indicating cue. A group of CD neurons responded to the cue in their response fields (mostly contralateral) and the cue response was usually enhanced when it indicated reward. In the reward-insensitive monkey, DA neurons showed no response to the cue, while the cue responses of CD neurons were not modulated by reward. Many CD neurons in the reward-sensitive monkeys, but not the reward-insensitive monkey, showed precue activity. These results suggest that DA neurons, with their connection to CD neurons, modulate the spatially selective signals in CD neurons in the reward-predicting manner and CD neurons in turn modulate saccade parameters with their polysynaptic connections to the oculomotor brain stem. Address for reprint requests and other correspondence: O. Hikosaka, Laboratory of Sensorimotor Research, National Eye Institute, National Institute of Health, 49 Convent Drive, Bldg. 49, Rm. 2A50, Bethesda, MD 20892-4435 (E-mail: oh@lsr.nei.nih.gov ). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Reward-Predicting Activity of Dopamine and Caudate Neurons—A Possible Mechanism of Motivational Control of Saccadic Eye Movement

Loading next page...
 
/lp/the-american-physiological-society/reward-predicting-activity-of-dopamine-and-caudate-neurons-a-possible-hNFD40gILF
Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
DOI
10.1152/jn.00721.2003
Publisher site
See Article on Publisher Site

Abstract

Recent studies have suggested that the basal ganglia are related to motivational control of behavior. To study how motivational signals modulate motor signals in the basal ganglia, we examined activity of midbrain dopamine (DA) neurons and caudate (CD) projection neurons while monkeys were performing a one-direction-rewarded version (1DR) of memory-guided saccade task. The cue stimulus indicated the goal position for an upcoming saccade and the presence or absence of reward after the trial. Among four monkeys we studied, three were sensitive to reward such that saccade velocity was significantly higher in the rewarded trials than in the nonrewarded trials; one monkey was insensitive to reward. In the reward-sensitive monkeys, both DA and CD neurons responded differentially to reward-indicating and no-reward-indicating cues. Thus DA neurons responded with excitation to a reward-indicating cue and with inhibition to a no-reward-indicating cue. A group of CD neurons responded to the cue in their response fields (mostly contralateral) and the cue response was usually enhanced when it indicated reward. In the reward-insensitive monkey, DA neurons showed no response to the cue, while the cue responses of CD neurons were not modulated by reward. Many CD neurons in the reward-sensitive monkeys, but not the reward-insensitive monkey, showed precue activity. These results suggest that DA neurons, with their connection to CD neurons, modulate the spatially selective signals in CD neurons in the reward-predicting manner and CD neurons in turn modulate saccade parameters with their polysynaptic connections to the oculomotor brain stem. Address for reprint requests and other correspondence: O. Hikosaka, Laboratory of Sensorimotor Research, National Eye Institute, National Institute of Health, 49 Convent Drive, Bldg. 49, Rm. 2A50, Bethesda, MD 20892-4435 (E-mail: oh@lsr.nei.nih.gov ).

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Feb 1, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off