Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Properties of synaptic transmission from photoreceptors to bipolar cells in the mudpuppy retina

Properties of synaptic transmission from photoreceptors to bipolar cells in the mudpuppy retina Abstract 1. Simultaneous, whole-cell recordings were obtained from synaptically coupled photoreceptor/bipolar cell pairs, by the use of direct visualization in a superfused, mudpuppy retinal slice preparation. 2. OFF-bipolar cells (BPs) generated sign-conserving responses when extrinsic current was injected into rods and cones, whereas ON-BPs generated a sign-reversing response. OFF-BPs (n = 24) responded faster than ON-BPs (n = 12), in terms of response latency (27.8 vs. 80.6 ms) and peak response times (50.5 vs. 159.8 ms) when current was injected into photoreceptors. We did not detect any significant difference between rod- versus cone-mediated latency or peak response times in the ON- and OFF-BP subtypes. 3. Rod and cone inputs to OFF-BPs were blocked by kynurenic acid (Kyn), but the doses required were significantly higher for rod inputs: the IC50 (the concentration at which an antagonist blocks 50% of the responses) for Kyn was 0.3 mM for cone inputs and 1 mM for rod inputs. 4. Rod inputs to OFF-BPs showed the same Kyn sensitivity as rod inputs to horizontal cells (HCs). However, cone inputs to HCs (IC50 < 200 microM) were more sensitive to Kyn than those to OFF-BPs. 5. The pharmacological studies presented here, together with previous studies, suggest that the sign-conserving pathway in the outer plexiform layer of the mudpuppy retina involves at least three subtypes of glutamate receptors: 1) cone-activated receptors of HCs; 2) cone-activated receptors of OFF-BPs; and 3) rod-activated receptors found in HCs and BPs.(ABSTRACT TRUNCATED AT 250 WORDS) Copyright © 1993 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Properties of synaptic transmission from photoreceptors to bipolar cells in the mudpuppy retina

Journal of Neurophysiology , Volume 69 (2): 352 – Feb 1, 1993

Loading next page...
 
/lp/the-american-physiological-society/properties-of-synaptic-transmission-from-photoreceptors-to-bipolar-WR8Lw0S91a

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1993 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. Simultaneous, whole-cell recordings were obtained from synaptically coupled photoreceptor/bipolar cell pairs, by the use of direct visualization in a superfused, mudpuppy retinal slice preparation. 2. OFF-bipolar cells (BPs) generated sign-conserving responses when extrinsic current was injected into rods and cones, whereas ON-BPs generated a sign-reversing response. OFF-BPs (n = 24) responded faster than ON-BPs (n = 12), in terms of response latency (27.8 vs. 80.6 ms) and peak response times (50.5 vs. 159.8 ms) when current was injected into photoreceptors. We did not detect any significant difference between rod- versus cone-mediated latency or peak response times in the ON- and OFF-BP subtypes. 3. Rod and cone inputs to OFF-BPs were blocked by kynurenic acid (Kyn), but the doses required were significantly higher for rod inputs: the IC50 (the concentration at which an antagonist blocks 50% of the responses) for Kyn was 0.3 mM for cone inputs and 1 mM for rod inputs. 4. Rod inputs to OFF-BPs showed the same Kyn sensitivity as rod inputs to horizontal cells (HCs). However, cone inputs to HCs (IC50 < 200 microM) were more sensitive to Kyn than those to OFF-BPs. 5. The pharmacological studies presented here, together with previous studies, suggest that the sign-conserving pathway in the outer plexiform layer of the mudpuppy retina involves at least three subtypes of glutamate receptors: 1) cone-activated receptors of HCs; 2) cone-activated receptors of OFF-BPs; and 3) rod-activated receptors found in HCs and BPs.(ABSTRACT TRUNCATED AT 250 WORDS) Copyright © 1993 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Feb 1, 1993

There are no references for this article.