Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances

Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances Abstract 1. We have investigated the electrical properties of neurons acutely dissociated from the substantia nigra zona compacta (SNZC) of the postnatal rat with whole cell patch-clamp recordings. Retrogradely labeled nigrostriatal neurons were identified with the use of rhodamine-labeled fluorescent latex microspheres. Over 90% of the rhodamine-labeled neurons in the SNZC demonstrated formaldehyde/glutaraldehyde-induced catecholamine fluorescence, indicating that they were dopaminergic (DA) neurons. 2. DA neurons had 15-20 microns ovoid or fusiform-shaped cell bodies with 2-3 thick proximal processes. Labeled neurons generated spontaneous action-potential activity in both regular and irregular patterns. These cells exhibited input resistances of 300-600 M omega and action-potential amplitudes of 60-80 mV. Locally applied dopamine inhibited the spontaneous activity of these neurons by hyperpolarizing the cells. 3. Outward currents were examined with voltage-clamp recordings using a tetrodotoxin (TTX)-containing medium. In all DA cells, depolarizing voltage commands activated several components of outward current depending on the holding potential of the cell. When cells were held at -40 mV (or more positive), voltage steps activated a sustained outward current. If the membrane potential was held more negative than -50 mV, a rapidly activating and inactivating component of outward current response could also be detected. 4. From a hyperpolarized holding potential (-90 mV) the transient outward current activated with depolarizing commands to -55 mV, peaking within 5 ms. The current inactivated with a monoexponential time constant of 53 +/- 4 (SE) ms. At more positive holding potentials (-40 mV) the steady-state inactivation of the current could be removed by applying a conditioning hyperpolarizing prepulse. In response to a fixed depolarizing voltage step, half-maximal inactivation occurred at about -65 mV. The transient current was blocked by 4-aminopyridine (4-AP). 5. The sustained outward currents were isolated by holding the cells at -40 mV. Two components of sustained outward current were distinguished by their sensitivity to the calcium channel blockers Co2+ (5 mM) and/or Cd2+ (200 microM). The current remaining in the presence of Co2+/Cd2+ was activated by depolarizing voltage commands more positive than -40 mV.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1990 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances

Loading next page...
 
/lp/the-american-physiological-society/postnatal-rat-nigrostriatal-dopaminergic-neurons-exhibit-five-types-of-rNde2ykDBk
Publisher
The American Physiological Society
Copyright
Copyright © 1990 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. We have investigated the electrical properties of neurons acutely dissociated from the substantia nigra zona compacta (SNZC) of the postnatal rat with whole cell patch-clamp recordings. Retrogradely labeled nigrostriatal neurons were identified with the use of rhodamine-labeled fluorescent latex microspheres. Over 90% of the rhodamine-labeled neurons in the SNZC demonstrated formaldehyde/glutaraldehyde-induced catecholamine fluorescence, indicating that they were dopaminergic (DA) neurons. 2. DA neurons had 15-20 microns ovoid or fusiform-shaped cell bodies with 2-3 thick proximal processes. Labeled neurons generated spontaneous action-potential activity in both regular and irregular patterns. These cells exhibited input resistances of 300-600 M omega and action-potential amplitudes of 60-80 mV. Locally applied dopamine inhibited the spontaneous activity of these neurons by hyperpolarizing the cells. 3. Outward currents were examined with voltage-clamp recordings using a tetrodotoxin (TTX)-containing medium. In all DA cells, depolarizing voltage commands activated several components of outward current depending on the holding potential of the cell. When cells were held at -40 mV (or more positive), voltage steps activated a sustained outward current. If the membrane potential was held more negative than -50 mV, a rapidly activating and inactivating component of outward current response could also be detected. 4. From a hyperpolarized holding potential (-90 mV) the transient outward current activated with depolarizing commands to -55 mV, peaking within 5 ms. The current inactivated with a monoexponential time constant of 53 +/- 4 (SE) ms. At more positive holding potentials (-40 mV) the steady-state inactivation of the current could be removed by applying a conditioning hyperpolarizing prepulse. In response to a fixed depolarizing voltage step, half-maximal inactivation occurred at about -65 mV. The transient current was blocked by 4-aminopyridine (4-AP). 5. The sustained outward currents were isolated by holding the cells at -40 mV. Two components of sustained outward current were distinguished by their sensitivity to the calcium channel blockers Co2+ (5 mM) and/or Cd2+ (200 microM). The current remaining in the presence of Co2+/Cd2+ was activated by depolarizing voltage commands more positive than -40 mV.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1990 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Jul 1, 1990

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off