Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat

Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat Abstract 1. This study examines whether the efficacy of polysynaptic group I excitatory pathways to extensor motoneurons are modified after axotomy of a synergistic nerve. Previously, it has been shown that stimulation of extensor nerves at group I strength can extend the stance phase and delay swing. Stimulation of the lateral gastrocnemius and soleus (LG/S) nerve prolongs stance for the duration of the stimulus train, whereas stimulation of the medial gastrocnemius (MG) nerve moderately increases stance. Our hypothesis was that after axotomy of the LG/S nerve the efficacy of the MG group I input would increase. 2. This idea was tested in 10 adult cats that had their left LG/S nerves axotomized for 3-28 days. On the experimental day the cats were decerebrated and the left (experimental) and right (control) LG/S and MG nerves were stimulated during late stance as the animals were walking on a motorized treadmill. A significant increase in the efficacy of the left MG nerve occurred 5 days after axotomy of the LG/S nerve when compared with the control response. By contrast, the previously cut LG/S nerve showed a reduction in efficacy after 3 days compared with the control limb. 3. Functionally, this plasticity may be an important mechanism by which the strength of the group I pathway is calibrated to different loads on the extensor muscles. Copyright © 1995 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat

Journal of Neurophysiology , Volume 74 (6): 2782 – Dec 1, 1995

Loading next page...
 
/lp/the-american-physiological-society/plasticity-of-the-extensor-group-i-pathway-controlling-the-stance-to-TvLuQ7jC3n

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1995 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. This study examines whether the efficacy of polysynaptic group I excitatory pathways to extensor motoneurons are modified after axotomy of a synergistic nerve. Previously, it has been shown that stimulation of extensor nerves at group I strength can extend the stance phase and delay swing. Stimulation of the lateral gastrocnemius and soleus (LG/S) nerve prolongs stance for the duration of the stimulus train, whereas stimulation of the medial gastrocnemius (MG) nerve moderately increases stance. Our hypothesis was that after axotomy of the LG/S nerve the efficacy of the MG group I input would increase. 2. This idea was tested in 10 adult cats that had their left LG/S nerves axotomized for 3-28 days. On the experimental day the cats were decerebrated and the left (experimental) and right (control) LG/S and MG nerves were stimulated during late stance as the animals were walking on a motorized treadmill. A significant increase in the efficacy of the left MG nerve occurred 5 days after axotomy of the LG/S nerve when compared with the control response. By contrast, the previously cut LG/S nerve showed a reduction in efficacy after 3 days compared with the control limb. 3. Functionally, this plasticity may be an important mechanism by which the strength of the group I pathway is calibrated to different loads on the extensor muscles. Copyright © 1995 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Dec 1, 1995

There are no references for this article.