Microstimulation of extrastriate area MST influences performance on a direction discrimination task

Microstimulation of extrastriate area MST influences performance on a direction discrimination task Abstract 1. Evidence from single-unit recordings suggests that neurons in the medial superior temporal visual area (MST) carry directional signals that influence psychophysical judgements of motion direction. We tested this hypothesis by electrically stimulating clusters of directionally selective neurons in MST (the dorsomedial subdivision, primarily) while rhesus monkeys performed a two-alternative, forced-choice direction discrimination task. 2. We performed forty-six microstimulation experiments on two rhesus monkeys. The visual stimuli were dynamic random dot patterns in which the strength of a coherent motion signal could be varied continuously about psychophysical threshold. The monkeys were rewarded for reporting correctly the direction of the coherent motion signal. Microstimulation was applied on half the trials, selected randomly, and the psychophysical data were analyzed to determine whether stimulation of MST neurons influenced the monkeys' choices. 3. Microstimulation influenced the monkeys' performance in a statistically significant manner in 67% of the experiments. In all but one of the significant experiments, microstimulation biased the monkeys' choices toward the direction of motion encoded by MST neurons at the stimulation site. Microstimulation had little effect on the slopes of the psychometric functions, suggesting that the stimulation-induced neural activity resembled a relatively pure motion "signal" rather than "noise." 4. Microstimulation exerted strong effects on the monkeys' behavior only when the visual stimulus was located within the multiunit receptive field measured at the stimulation site. This kind of spatial specificity has also been observed in the middle temporal visual area (MT), but receptive fields in MST are typically much larger than those in MT. Thus MST microstimulation effects are characterized by a coarser spatial scale: stimulation of a single site in MST can influence judgements over a much larger portion of the visual field than equivalent stimulation in MT. 5. Microstimulation was often most effective when visual stimuli were placed within a particularly responsive subregion of the receptive field (a "hot spot"). 6. The results show that MST neurons, like MT neurons, can strongly influence performance on a direction discrimination task. Whether MT and MST influence the decision process in parallel or in series remains to be determined. Copyright © 1995 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Microstimulation of extrastriate area MST influences performance on a direction discrimination task

Journal of Neurophysiology, Volume 73 (2): 437 – Feb 1, 1995

Loading next page...
 
/lp/the-american-physiological-society/microstimulation-of-extrastriate-area-mst-influences-performance-on-a-4laJ68g784
Publisher
The American Physiological Society
Copyright
Copyright © 1995 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. Evidence from single-unit recordings suggests that neurons in the medial superior temporal visual area (MST) carry directional signals that influence psychophysical judgements of motion direction. We tested this hypothesis by electrically stimulating clusters of directionally selective neurons in MST (the dorsomedial subdivision, primarily) while rhesus monkeys performed a two-alternative, forced-choice direction discrimination task. 2. We performed forty-six microstimulation experiments on two rhesus monkeys. The visual stimuli were dynamic random dot patterns in which the strength of a coherent motion signal could be varied continuously about psychophysical threshold. The monkeys were rewarded for reporting correctly the direction of the coherent motion signal. Microstimulation was applied on half the trials, selected randomly, and the psychophysical data were analyzed to determine whether stimulation of MST neurons influenced the monkeys' choices. 3. Microstimulation influenced the monkeys' performance in a statistically significant manner in 67% of the experiments. In all but one of the significant experiments, microstimulation biased the monkeys' choices toward the direction of motion encoded by MST neurons at the stimulation site. Microstimulation had little effect on the slopes of the psychometric functions, suggesting that the stimulation-induced neural activity resembled a relatively pure motion "signal" rather than "noise." 4. Microstimulation exerted strong effects on the monkeys' behavior only when the visual stimulus was located within the multiunit receptive field measured at the stimulation site. This kind of spatial specificity has also been observed in the middle temporal visual area (MT), but receptive fields in MST are typically much larger than those in MT. Thus MST microstimulation effects are characterized by a coarser spatial scale: stimulation of a single site in MST can influence judgements over a much larger portion of the visual field than equivalent stimulation in MT. 5. Microstimulation was often most effective when visual stimuli were placed within a particularly responsive subregion of the receptive field (a "hot spot"). 6. The results show that MST neurons, like MT neurons, can strongly influence performance on a direction discrimination task. Whether MT and MST influence the decision process in parallel or in series remains to be determined. Copyright © 1995 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Feb 1, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off