Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation

Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light... Abstract Responses of macaque lateral geniculate nucleus (LGN) cells to stimuli of different incremental intensities and wavelength compositions were studied at different levels of light adaptation from scotopic to low photopic levels. Stimuli were large in comparison with receptive-field size. Human increment thresholds were measured for comparison. The strength of responses grew in many cells from threshold up to a saturation level as a logarithmic function of incremental intensity. More complex intensity-response functions were also obtained, particularly from parvocellular layer (PCL) cells, but the shape and slope of the intensity-response function changed as a function of adaptation level only with chromatic backgrounds. As a function of adaptation level, the intensity-response functions shifted along the logarithmic abscissa but not sufficiently for a complete contrast constancy. Thus responses to any constant contrast became smaller when adaptation level decreased. The change from cone to rod responses, when possible, took place without noticeable change in shape of intensity-response functions, and much of the adaptive shift of the functions could be attributed to the change-over between rods and cones. Differences between different cells in light adaptation and dark-adapted sensitivity were large, mostly because of variation in the strength of rod input. The strongest excitatory rod inputs were found in PCL cells activated by short-wavelength light, so that the highest sensitivity at low levels of illumination occurred in blue- and blue-green-sensitive cells. The lowest increment thresholds based on cones matched the thresholds of macaque cone late receptor potentials recorded by Boynton and Whitten (3). They were also similar to human cone thresholds measured psychophysically but only for small stimulus sizes that may approximate the size of the receptive-field centers. Human sensitivity was much higher when measured with large stimulus sizes, indicating integration at post-geniculate neural levels. Light adaptation, as evaluated with respect to contrast constancy and Weber law behavior, was similarly incomplete in monkey single cells and human perception. A few cat LGN cells were studied in a control experiment; results agreed with previous findings. The light adaptation of cat cels was more complete and sensitivity higher than those observed under comparable conditions in macaque single cells and human. The maintained activity level of cells was little affected by the intensity of steady backgrounds. Thus, the steady-state hyper-polarisation of receptors was not transmitted to LGN cells. Copyright © 1983 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation

Loading next page...
 
/lp/the-american-physiological-society/light-adaptation-in-cells-of-macaque-lateral-geniculate-nucleus-and-faVK76vkRl
Publisher site
See Article on Publisher Site

Abstract

Abstract Responses of macaque lateral geniculate nucleus (LGN) cells to stimuli of different incremental intensities and wavelength compositions were studied at different levels of light adaptation from scotopic to low photopic levels. Stimuli were large in comparison with receptive-field size. Human increment thresholds were measured for comparison. The strength of responses grew in many cells from threshold up to a saturation level as a logarithmic function of incremental intensity. More complex intensity-response functions were also obtained, particularly from parvocellular layer (PCL) cells, but the shape and slope of the intensity-response function changed as a function of adaptation level only with chromatic backgrounds. As a function of adaptation level, the intensity-response functions shifted along the logarithmic abscissa but not sufficiently for a complete contrast constancy. Thus responses to any constant contrast became smaller when adaptation level decreased. The change from cone to rod responses, when possible, took place without noticeable change in shape of intensity-response functions, and much of the adaptive shift of the functions could be attributed to the change-over between rods and cones. Differences between different cells in light adaptation and dark-adapted sensitivity were large, mostly because of variation in the strength of rod input. The strongest excitatory rod inputs were found in PCL cells activated by short-wavelength light, so that the highest sensitivity at low levels of illumination occurred in blue- and blue-green-sensitive cells. The lowest increment thresholds based on cones matched the thresholds of macaque cone late receptor potentials recorded by Boynton and Whitten (3). They were also similar to human cone thresholds measured psychophysically but only for small stimulus sizes that may approximate the size of the receptive-field centers. Human sensitivity was much higher when measured with large stimulus sizes, indicating integration at post-geniculate neural levels. Light adaptation, as evaluated with respect to contrast constancy and Weber law behavior, was similarly incomplete in monkey single cells and human perception. A few cat LGN cells were studied in a control experiment; results agreed with previous findings. The light adaptation of cat cels was more complete and sensitivity higher than those observed under comparable conditions in macaque single cells and human. The maintained activity level of cells was little affected by the intensity of steady backgrounds. Thus, the steady-state hyper-polarisation of receptors was not transmitted to LGN cells. Copyright © 1983 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Oct 1, 1983

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off