Ionic influences on the prolonged depolarization of turtle cones in situ

Ionic influences on the prolonged depolarization of turtle cones in situ Abstract 1. The effects of ion channel blockers and ion substitutions on the prolonged depolarization of cones in the retina of the turtle (Pseudemys scripta elegans) were studied by intracellular recording. 2. The results of current injection experiments indicate that the prolonged depolarization is regenerative and accompanied by a reduction in the cone's input resistance. 3. The addition of cobalt (5–10 mM) or the removal of extracellular calcium suppressed the prolonged depolarization. Raising extracellular calcium or adding strontium (10 mM) lowered the threshold and increased the duration of the response. 4. Unlike the feedback spikes of turtle cones studied by Piccolino and Gerschenfeld, the prolonged depolarization was not blocked by the organic calcium channel blocker, D600. 5. Adding a calcium chelator, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), to the electrolyte caused a progressive shortening of the prolonged depolarization until it was ultimately abolished. 6. Lowering extracellular sodium or use of the potassium channel blockers tetraethylammonium (TEA) and 4-aminopyridine (4-AP) had little effect on the prolonged depolarization. 7. Removing chloride from the superfusate induced a significant enhancement of the prolonged depolarization. In normal superfusate, the response tended to be of larger amplitude when recorded with electrodes containing chloride 1.5 M KCl + 1.5 M potassium acetate (KA) rather than KA or potassium methylsulfate (KM) alone. 8. The results suggest that the prolonged depolarization is initiated by the regenerative activation of voltage-sensitive calcium channels and sustained by a calcium-dependent chloride efflux. The present findings are also discussed in relation to the functional significance of the prolonged depolarization and mechanisms for the surround antagonism of cones in situ. Copyright © 1991 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Ionic influences on the prolonged depolarization of turtle cones in situ

Journal of Neurophysiology, Volume 65 (1): 96 – Jan 1, 1991

Loading next page...
 
/lp/the-american-physiological-society/ionic-influences-on-the-prolonged-depolarization-of-turtle-cones-in-8SRs1yInU8
Publisher
The American Physiological Society
Copyright
Copyright © 1991 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. The effects of ion channel blockers and ion substitutions on the prolonged depolarization of cones in the retina of the turtle (Pseudemys scripta elegans) were studied by intracellular recording. 2. The results of current injection experiments indicate that the prolonged depolarization is regenerative and accompanied by a reduction in the cone's input resistance. 3. The addition of cobalt (5–10 mM) or the removal of extracellular calcium suppressed the prolonged depolarization. Raising extracellular calcium or adding strontium (10 mM) lowered the threshold and increased the duration of the response. 4. Unlike the feedback spikes of turtle cones studied by Piccolino and Gerschenfeld, the prolonged depolarization was not blocked by the organic calcium channel blocker, D600. 5. Adding a calcium chelator, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), to the electrolyte caused a progressive shortening of the prolonged depolarization until it was ultimately abolished. 6. Lowering extracellular sodium or use of the potassium channel blockers tetraethylammonium (TEA) and 4-aminopyridine (4-AP) had little effect on the prolonged depolarization. 7. Removing chloride from the superfusate induced a significant enhancement of the prolonged depolarization. In normal superfusate, the response tended to be of larger amplitude when recorded with electrodes containing chloride 1.5 M KCl + 1.5 M potassium acetate (KA) rather than KA or potassium methylsulfate (KM) alone. 8. The results suggest that the prolonged depolarization is initiated by the regenerative activation of voltage-sensitive calcium channels and sustained by a calcium-dependent chloride efflux. The present findings are also discussed in relation to the functional significance of the prolonged depolarization and mechanisms for the surround antagonism of cones in situ. Copyright © 1991 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Jan 1, 1991

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off