Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ionic conductances of monkey solitary cone inner segments

Ionic conductances of monkey solitary cone inner segments Abstract 1. The membrane properties of cone inner segments dissociated enzymatically from monkey retina were studied under voltage-clamp conditions using patch pipettes in the whole-cell clamp configuration. 2. A noninactivating, voltage-gated calcium current was evoked at potentials positive to -60 mV and peaked between -30 and -20 mV when barium was substituted for calcium. Cadmium (50 microM) but not nickel (50 microM) blocked the current. 3. A large calcium-activated anion current (IAn) was observed when the membrane potential was set to a level between -60 and 30 mV. The reversal potential of IAn was 0 mV with chloride as the sole anion and about -30 and -40 mV when methanesulfonate and D-aspartate, respectively, replaced intracellular chloride to set the equilibrium potential for chloride at -50 mV. IAn inactivated and oscillated when the membrane potential was maintained at depolarized levels, contrary to calcium-activated anionic currents seen in photoreceptors of other species. 4. A sustained-type potassium current was activated by depolarizations positive to -50 mV. The time course of activation and deactivation were voltage dependent. This potassium current was partially blocked by 20 mM tetraethylammonium ions. 5. A transient potassium current was activated by depolarizations positive to -20 mV. This current was blocked by 4-aminopyridine (2 mM) and inactivated with a time constant of approximately 500 ms. The amplitude in response to voltage steps to 45 mV was decreased by prepulses to voltages more positive than -30 mV. 6. Hyperpolarization negative to -65 mV activated an inward current that was completely blocked by external cesium (10 mM). The reversal potential suggested a conductance mechanism permeable to both sodium and potassium ions. 7. A calcium-activated potassium current, which was found in salamander photoreceptors, was not detected. 8. The presence of these conductances is expected to influence the membrane potential and the time course of the light response in monkey cones. Copyright © 1994 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Ionic conductances of monkey solitary cone inner segments

Journal of Neurophysiology , Volume 71 (2): 656 – Feb 1, 1994

Loading next page...
 
/lp/the-american-physiological-society/ionic-conductances-of-monkey-solitary-cone-inner-segments-2Qr6K5oWbT

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1994 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. The membrane properties of cone inner segments dissociated enzymatically from monkey retina were studied under voltage-clamp conditions using patch pipettes in the whole-cell clamp configuration. 2. A noninactivating, voltage-gated calcium current was evoked at potentials positive to -60 mV and peaked between -30 and -20 mV when barium was substituted for calcium. Cadmium (50 microM) but not nickel (50 microM) blocked the current. 3. A large calcium-activated anion current (IAn) was observed when the membrane potential was set to a level between -60 and 30 mV. The reversal potential of IAn was 0 mV with chloride as the sole anion and about -30 and -40 mV when methanesulfonate and D-aspartate, respectively, replaced intracellular chloride to set the equilibrium potential for chloride at -50 mV. IAn inactivated and oscillated when the membrane potential was maintained at depolarized levels, contrary to calcium-activated anionic currents seen in photoreceptors of other species. 4. A sustained-type potassium current was activated by depolarizations positive to -50 mV. The time course of activation and deactivation were voltage dependent. This potassium current was partially blocked by 20 mM tetraethylammonium ions. 5. A transient potassium current was activated by depolarizations positive to -20 mV. This current was blocked by 4-aminopyridine (2 mM) and inactivated with a time constant of approximately 500 ms. The amplitude in response to voltage steps to 45 mV was decreased by prepulses to voltages more positive than -30 mV. 6. Hyperpolarization negative to -65 mV activated an inward current that was completely blocked by external cesium (10 mM). The reversal potential suggested a conductance mechanism permeable to both sodium and potassium ions. 7. A calcium-activated potassium current, which was found in salamander photoreceptors, was not detected. 8. The presence of these conductances is expected to influence the membrane potential and the time course of the light response in monkey cones. Copyright © 1994 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Feb 1, 1994

There are no references for this article.