In vivo biosynthesis and turnover of glomerular basement membrane in diabetic rats

In vivo biosynthesis and turnover of glomerular basement membrane in diabetic rats Abstract Glomerular basement membrane (GBM) was labeled in vivo by the injection of tracer amounts of tritiated proline into normal and streptozotocin-diabetic rats. Basement membrane biosynthesis and turnover were determined from the specific activities of proline and hydroxyproline in samples purified following osmotic lysis of glomeruli isolated 4 h to 12 days after injection. Peak radiolabeling of normal and diabetic GBM occurred within 24-48 h and 48-72 h, respectively, and, when corrected for differences in the serum proline specific activities, 3Hproline incorporation was greater in diabetic than in normal samples. In contrast to the subsequent time-dependent progressive decline in radiolabeling in basement membranes from normal animals, specific activities of proline and hydroxyproline in diabetic glomerular basement membrane did not change significantly over the same period of observation. Renal cortical mass and glomerular basement membrane collagen content were preserved in diabetic animals despite loss of body weight. The findings are compatible with prolongation of glomerular basement membrane turnover in experimental diabetes, and suggest that diminished degradation contributes to the accumulation of glomerular basement membrane that is characteristic of chronic diabetes. Copyright © 1982 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Renal Physiology The American Physiological Society

In vivo biosynthesis and turnover of glomerular basement membrane in diabetic rats

AJP - Renal Physiology, Volume 242 (4): F385 – Apr 1, 1982

Loading next page...
 
/lp/the-american-physiological-society/in-vivo-biosynthesis-and-turnover-of-glomerular-basement-membrane-in-09CRuf7cYA
Publisher
The American Physiological Society
Copyright
Copyright © 1982 the American Physiological Society
ISSN
0363-6127
eISSN
1522-1466
Publisher site
See Article on Publisher Site

Abstract

Abstract Glomerular basement membrane (GBM) was labeled in vivo by the injection of tracer amounts of tritiated proline into normal and streptozotocin-diabetic rats. Basement membrane biosynthesis and turnover were determined from the specific activities of proline and hydroxyproline in samples purified following osmotic lysis of glomeruli isolated 4 h to 12 days after injection. Peak radiolabeling of normal and diabetic GBM occurred within 24-48 h and 48-72 h, respectively, and, when corrected for differences in the serum proline specific activities, 3Hproline incorporation was greater in diabetic than in normal samples. In contrast to the subsequent time-dependent progressive decline in radiolabeling in basement membranes from normal animals, specific activities of proline and hydroxyproline in diabetic glomerular basement membrane did not change significantly over the same period of observation. Renal cortical mass and glomerular basement membrane collagen content were preserved in diabetic animals despite loss of body weight. The findings are compatible with prolongation of glomerular basement membrane turnover in experimental diabetes, and suggest that diminished degradation contributes to the accumulation of glomerular basement membrane that is characteristic of chronic diabetes. Copyright © 1982 the American Physiological Society

Journal

AJP - Renal PhysiologyThe American Physiological Society

Published: Apr 1, 1982

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off