Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle

Exercise-induced expression of angiogenesis-related transcription and growth factors in human... Abstract mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and hypoxia-inducible factor (HIF) subunits HIF-1α and HIF-1β in human skeletal muscle was studied during endurance exercise at different degrees of oxygen delivery. Muscle biopsies were taken before and after 45 min of one-legged knee-extension exercise performed under conditions of nonrestricted or restricted blood flow (∼15–20% lower) at the same absolute workload. Exercise increased VEGF mRNA expression by 178% and HIF-1β by 340%, but not HIF-1α and FGF-2. No significant differences between the restricted and nonrestricted groups were observed. The exercise-induced increase in VEGF mRNA was correlated to the exercise changes in HIF-1α and HIF-1β mRNA. The changes in VEGF, HIF-1α, and HIF-1β mRNAs were correlated to the exercise-induced increase in femoral venous plasma lactate concentration. It is concluded that 1 ) VEGF but not FGF-2 gene expression is upregulated in human skeletal muscle by a single bout of dynamic exercise and that there is a graded response in VEGF mRNA expression related to the metabolic stress and 2 ) the increase in VEGF mRNA expression correlates to the changes in both HIF-1α and HIF-1β mRNA. ischemia gene expression vascular endothelial growth factor fibroblast growth factor hypoxia-inducible factor 1 Footnotes Address reprint requests to T. Gustafsson. This work was supported by the Swedish Heart-Lung Association, the Fraenckel Foundation for Medical Research, the Swedish Medical Research Council (4494), the Swedish Society of Medicine, the Swedish National Center for Research in Sports, and the Swedish Association for the Promotion of Sport. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. §1734 solely to indicate this fact. Copyright © 1999 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Heart and Circulatory Physiology The American Physiological Society

Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle

Loading next page...
 
/lp/the-american-physiological-society/exercise-induced-expression-of-angiogenesis-related-transcription-and-kmscfdvC7e
Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0363-6135
eISSN
1522-1539
Publisher site
See Article on Publisher Site

Abstract

Abstract mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and hypoxia-inducible factor (HIF) subunits HIF-1α and HIF-1β in human skeletal muscle was studied during endurance exercise at different degrees of oxygen delivery. Muscle biopsies were taken before and after 45 min of one-legged knee-extension exercise performed under conditions of nonrestricted or restricted blood flow (∼15–20% lower) at the same absolute workload. Exercise increased VEGF mRNA expression by 178% and HIF-1β by 340%, but not HIF-1α and FGF-2. No significant differences between the restricted and nonrestricted groups were observed. The exercise-induced increase in VEGF mRNA was correlated to the exercise changes in HIF-1α and HIF-1β mRNA. The changes in VEGF, HIF-1α, and HIF-1β mRNAs were correlated to the exercise-induced increase in femoral venous plasma lactate concentration. It is concluded that 1 ) VEGF but not FGF-2 gene expression is upregulated in human skeletal muscle by a single bout of dynamic exercise and that there is a graded response in VEGF mRNA expression related to the metabolic stress and 2 ) the increase in VEGF mRNA expression correlates to the changes in both HIF-1α and HIF-1β mRNA. ischemia gene expression vascular endothelial growth factor fibroblast growth factor hypoxia-inducible factor 1 Footnotes Address reprint requests to T. Gustafsson. This work was supported by the Swedish Heart-Lung Association, the Fraenckel Foundation for Medical Research, the Swedish Medical Research Council (4494), the Swedish Society of Medicine, the Swedish National Center for Research in Sports, and the Swedish Association for the Promotion of Sport. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. §1734 solely to indicate this fact. Copyright © 1999 the American Physiological Society

Journal

AJP - Heart and Circulatory PhysiologyThe American Physiological Society

Published: Feb 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off