Epileptiform activity in the hippocampus produced by tetraethylammonium

Epileptiform activity in the hippocampus produced by tetraethylammonium Abstract 1. The epileptiform discharges in the CA3 region of the rat hippocampal slice produced by bath application of the potassium channel blocker tetraethylammonium (TEA) were investigated. The effects of a convulsant (5 mM) and subconvulsant (0.5 mM) concentration of TEA on the mossy fiber-evoked synaptic currents were studied by the use of voltage-clamp techniques to determine whether TEA, like 4-aminopyridine (4-AP), another potassium channel blocker and convulsant, increased both inhibitory and excitatory components of the synaptic response. 2. At extracellular potassium concentrations of 2.5 mM, TEA (5 mM) was found to produce spontaneously occurring epileptiform discharges that could be recorded extracellularly. The intracellular correlate of the epileptiform discharge, the paroxysmal depolarizing shift (PDS), could be reversed in polarity by depolarizing the membrane and was associated with a large increase in membrane conductance. These results suggest that a synaptically mediated potential underlies the generation of the epileptiform discharge. 3. The reversal potential for the PDS was dependent on the time, relative to the extracellularly recorded field discharge, at which the measurement was made. In current clamp the mean reversal potential of the PDS measured at the midpoint of the extracellular discharge was -3.3 +/- 2.9 (SE) mV (n = 9). The reversal potential of the PDS was considerably more negative when measured either before or after the midpoint of the extracellular discharge, suggesting the presence of an inhibitory synaptic component. In voltage clamp similar results were obtained and a large conductance change was found to be associated with the PDS. These results suggest that the synaptic conductance associated with the PDS has both inhibitory and excitatory components. 4. TEA increased significantly the mossy fiber-evoked, early-inhibitory conductance. A convulsant concentration (5 mM) increased the conductance measured 15 ms after the stimulus from 39.7 +/- 8.7 to 87.2 +/- 8.0 nS (n = 6). The reversal potential associated with the conductance depolarized from -68.3 +/- 3.4 to -58.3 +/- 4.0 mV after 5 mM TEA. A subconvulsant concentration of TEA (0.5 mM) also increased the conductance of the mossy fiber-evoked response at 15 ms after the stimulus from 49.5 +/- 3.1 to 63.1 +/- 6.1 nS (n = 4) without an associated shift in reversal potential. 5. The late-inhibitory component of the mossy fiber-evoked response, when present, was increased by 5 mM TEA and unchanged by 0.5 mM TEA. 6. The excitatory mossy fiber-evoked synaptic current was studied in the presence of picrotoxin and was found to be increased and prolonged by 5 mM TEA.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1990 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Epileptiform activity in the hippocampus produced by tetraethylammonium

Journal of Neurophysiology, Volume 64 (4): 1077 – Oct 1, 1990

Loading next page...
 
/lp/the-american-physiological-society/epileptiform-activity-in-the-hippocampus-produced-by-WpiPOwmor2
Publisher
The American Physiological Society
Copyright
Copyright © 1990 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. The epileptiform discharges in the CA3 region of the rat hippocampal slice produced by bath application of the potassium channel blocker tetraethylammonium (TEA) were investigated. The effects of a convulsant (5 mM) and subconvulsant (0.5 mM) concentration of TEA on the mossy fiber-evoked synaptic currents were studied by the use of voltage-clamp techniques to determine whether TEA, like 4-aminopyridine (4-AP), another potassium channel blocker and convulsant, increased both inhibitory and excitatory components of the synaptic response. 2. At extracellular potassium concentrations of 2.5 mM, TEA (5 mM) was found to produce spontaneously occurring epileptiform discharges that could be recorded extracellularly. The intracellular correlate of the epileptiform discharge, the paroxysmal depolarizing shift (PDS), could be reversed in polarity by depolarizing the membrane and was associated with a large increase in membrane conductance. These results suggest that a synaptically mediated potential underlies the generation of the epileptiform discharge. 3. The reversal potential for the PDS was dependent on the time, relative to the extracellularly recorded field discharge, at which the measurement was made. In current clamp the mean reversal potential of the PDS measured at the midpoint of the extracellular discharge was -3.3 +/- 2.9 (SE) mV (n = 9). The reversal potential of the PDS was considerably more negative when measured either before or after the midpoint of the extracellular discharge, suggesting the presence of an inhibitory synaptic component. In voltage clamp similar results were obtained and a large conductance change was found to be associated with the PDS. These results suggest that the synaptic conductance associated with the PDS has both inhibitory and excitatory components. 4. TEA increased significantly the mossy fiber-evoked, early-inhibitory conductance. A convulsant concentration (5 mM) increased the conductance measured 15 ms after the stimulus from 39.7 +/- 8.7 to 87.2 +/- 8.0 nS (n = 6). The reversal potential associated with the conductance depolarized from -68.3 +/- 3.4 to -58.3 +/- 4.0 mV after 5 mM TEA. A subconvulsant concentration of TEA (0.5 mM) also increased the conductance of the mossy fiber-evoked response at 15 ms after the stimulus from 49.5 +/- 3.1 to 63.1 +/- 6.1 nS (n = 4) without an associated shift in reversal potential. 5. The late-inhibitory component of the mossy fiber-evoked response, when present, was increased by 5 mM TEA and unchanged by 0.5 mM TEA. 6. The excitatory mossy fiber-evoked synaptic current was studied in the presence of picrotoxin and was found to be increased and prolonged by 5 mM TEA.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1990 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Oct 1, 1990

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off