Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage

Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and... Abstract We analyzed adaptation mechanisms regulating systemic inflammatory response of the stressed body by using an experimental challenge of repeated exercise bouts and accompanying muscle inflammation. Eight untrained men bicycled at 90 W for 90 min, 3 days in a row. Exercise induced peripheral neutrophilia with a leftward shift of neutrophil nucleus and neutrophil priming for oxidative activity determined by luminol-dependent chemiluminescence. Plasma growth hormone and interleukin-6 rose significantly after exercise and were closely correlated with the neutrophil responses. Serum creatine kinase and myoglobin levels as muscle damage markers rose after exercise in “delayed onset” and were closely correlated with the preceding neutrophil responses. These exercise-induced responses were strongest on day 1 , but the magnitude gradually decreased with progressive daily exercise. In contrast, the magnitude of catecholamine responses to exercise sessions gradually rose, possibly suppressing neutrophil oxidative responses. These results indicate that stress-induced systemic release of bioactive substances may determine neutrophil mobilization and functional status, which then may affect local tissue damage of susceptible organs. growth hormone interleukin-6 catecholamine reactive oxygen species systemic inflammatory response syndrome Footnotes Address for reprint requests and other correspondence: S. Nakaji, Dept. of Hygiene, Hirosaki Univ. School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. §1734 solely to indicate this fact. Copyright © 1999 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Physiology The American Physiological Society

Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage

Loading next page...
 
/lp/the-american-physiological-society/endurance-exercise-causes-interaction-among-stress-hormones-cytokines-4JFsikiXKB
Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
8750-7587
eISSN
1522-1601
Publisher site
See Article on Publisher Site

Abstract

Abstract We analyzed adaptation mechanisms regulating systemic inflammatory response of the stressed body by using an experimental challenge of repeated exercise bouts and accompanying muscle inflammation. Eight untrained men bicycled at 90 W for 90 min, 3 days in a row. Exercise induced peripheral neutrophilia with a leftward shift of neutrophil nucleus and neutrophil priming for oxidative activity determined by luminol-dependent chemiluminescence. Plasma growth hormone and interleukin-6 rose significantly after exercise and were closely correlated with the neutrophil responses. Serum creatine kinase and myoglobin levels as muscle damage markers rose after exercise in “delayed onset” and were closely correlated with the preceding neutrophil responses. These exercise-induced responses were strongest on day 1 , but the magnitude gradually decreased with progressive daily exercise. In contrast, the magnitude of catecholamine responses to exercise sessions gradually rose, possibly suppressing neutrophil oxidative responses. These results indicate that stress-induced systemic release of bioactive substances may determine neutrophil mobilization and functional status, which then may affect local tissue damage of susceptible organs. growth hormone interleukin-6 catecholamine reactive oxygen species systemic inflammatory response syndrome Footnotes Address for reprint requests and other correspondence: S. Nakaji, Dept. of Hygiene, Hirosaki Univ. School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. §1734 solely to indicate this fact. Copyright © 1999 the American Physiological Society

Journal

Journal of Applied PhysiologyThe American Physiological Society

Published: Oct 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off