Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Detection of specific mRNAs in single nephron segments by use of the polymerase chain reaction

Detection of specific mRNAs in single nephron segments by use of the polymerase chain reaction Abstract We have developed a procedure to detect specific mRNAs in single renal nephron segments. This approach combines microdissection, reverse transcription (RT) of the target mRNA, and amplification of the resulting cDNA using the polymerase chain reaction (PCR). After microdissection, the sample is placed in a tube where it is permeabilized and where all reactions are performed directly without the need for isolation of the RNA. Our model target was the mRNA for aldose reductase. This enzyme catalyzes the conversion of glucose to sorbitol. Its expression is modulated by changes in extracellular osmolality in the renal medulla. RT-PCR of inner medullary collecting duct (1 mm) and glomeruli (6-10) yielded a product of the predicted length (670 base pairs) defined by the PCR primers. Its identity was confirmed by a specific oligonucleotide probe that differed from the primers. RT-PCR of proximal tubules (1 mm) resulted in no aldose reductase-specific amplification product. RT-PCR is generally applicable for measuring specific gene expression in single nephron segments or small numbers of cultured cells. Utility, limitations, and refinements of this approach are discussed. Copyright © 1990 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Renal Physiology The American Physiological Society

Detection of specific mRNAs in single nephron segments by use of the polymerase chain reaction

Loading next page...
 
/lp/the-american-physiological-society/detection-of-specific-mrnas-in-single-nephron-segments-by-use-of-the-tKe16g0QWw

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1990 the American Physiological Society
ISSN
0363-6127
eISSN
1522-1466
Publisher site
See Article on Publisher Site

Abstract

Abstract We have developed a procedure to detect specific mRNAs in single renal nephron segments. This approach combines microdissection, reverse transcription (RT) of the target mRNA, and amplification of the resulting cDNA using the polymerase chain reaction (PCR). After microdissection, the sample is placed in a tube where it is permeabilized and where all reactions are performed directly without the need for isolation of the RNA. Our model target was the mRNA for aldose reductase. This enzyme catalyzes the conversion of glucose to sorbitol. Its expression is modulated by changes in extracellular osmolality in the renal medulla. RT-PCR of inner medullary collecting duct (1 mm) and glomeruli (6-10) yielded a product of the predicted length (670 base pairs) defined by the PCR primers. Its identity was confirmed by a specific oligonucleotide probe that differed from the primers. RT-PCR of proximal tubules (1 mm) resulted in no aldose reductase-specific amplification product. RT-PCR is generally applicable for measuring specific gene expression in single nephron segments or small numbers of cultured cells. Utility, limitations, and refinements of this approach are discussed. Copyright © 1990 the American Physiological Society

Journal

AJP - Renal PhysiologyThe American Physiological Society

Published: May 1, 1990

There are no references for this article.