CORP: Measurement of upper and lower limb muscle strength and voluntary activation

CORP: Measurement of upper and lower limb muscle strength and voluntary activation Muscle strength, the maximal force-generating capacity of a muscle or group of muscles, is regularly assessed in physiological experiments and clinical trials. An understanding of the expected variation in strength and the factors that contribute to this variation is important when designing experiments, describing methodologies, interpreting results, and attempting to replicate methods of others and reproduce their findings. In this review (Cores of Reproducibility in Physiology), we report on the intra- and inter-rater reliability of tests of upper and lower limb muscle strength and voluntary activation in humans. Isometric, isokinetic, and isoinertial strength exhibit good intra-rater reliability in most samples (correlation coefficients ≥0.90). However, some tests of isoinertial strength exhibit systematic bias that is not resolved by familiarization. With the exception of grip strength, few attempts have been made to examine inter-rater reliability of tests of muscle strength. The acute factors most likely to affect muscle strength and serve as a source of its variation from trial-to-trial or day-to-day include attentional focus, breathing technique, remote muscle contractions, rest periods, temperature (core, muscle), time of day, visual feedback, body and limb posture, body stabilization, acute caffeine consumption, dehydration, pain, fatigue from preceding exercise, and static stretching >60 s. Voluntary activation, the nervous system’s ability to drive a muscle to create its maximal force, exhibits good intra-rater reliability when examined with twitch interpolation (correlation coefficients >0.80). However, inter-rater reliability has not been formally examined. The methodological factors most likely to influence voluntary activation are myograph compliance and sensitivity; stimulation location, intensity, and inadvertent stimulation of antagonists; joint angle (muscle length); and the resting twitch. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Physiology The American Physiological Society

CORP: Measurement of upper and lower limb muscle strength and voluntary activation

Loading next page...
 
/lp/the-american-physiological-society/corp-measurement-of-upper-and-lower-limb-muscle-strength-and-voluntary-D5VAIareky
ISSN
8750-7587
eISSN
1522-1601
D.O.I.
10.1152/japplphysiol.00569.2018
Publisher site
See Article on Publisher Site

Abstract

Muscle strength, the maximal force-generating capacity of a muscle or group of muscles, is regularly assessed in physiological experiments and clinical trials. An understanding of the expected variation in strength and the factors that contribute to this variation is important when designing experiments, describing methodologies, interpreting results, and attempting to replicate methods of others and reproduce their findings. In this review (Cores of Reproducibility in Physiology), we report on the intra- and inter-rater reliability of tests of upper and lower limb muscle strength and voluntary activation in humans. Isometric, isokinetic, and isoinertial strength exhibit good intra-rater reliability in most samples (correlation coefficients ≥0.90). However, some tests of isoinertial strength exhibit systematic bias that is not resolved by familiarization. With the exception of grip strength, few attempts have been made to examine inter-rater reliability of tests of muscle strength. The acute factors most likely to affect muscle strength and serve as a source of its variation from trial-to-trial or day-to-day include attentional focus, breathing technique, remote muscle contractions, rest periods, temperature (core, muscle), time of day, visual feedback, body and limb posture, body stabilization, acute caffeine consumption, dehydration, pain, fatigue from preceding exercise, and static stretching >60 s. Voluntary activation, the nervous system’s ability to drive a muscle to create its maximal force, exhibits good intra-rater reliability when examined with twitch interpolation (correlation coefficients >0.80). However, inter-rater reliability has not been formally examined. The methodological factors most likely to influence voluntary activation are myograph compliance and sensitivity; stimulation location, intensity, and inadvertent stimulation of antagonists; joint angle (muscle length); and the resting twitch.

Journal

Journal of Applied PhysiologyThe American Physiological Society

Published: Mar 1, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off