Circuitry Underlying AntiOpioid Actions of Orphanin FQ in the Rostral Ventromedial Medulla

Circuitry Underlying AntiOpioid Actions of Orphanin FQ in the Rostral Ventromedial Medulla Abstract Heinricher, M. M., S. McGaraughty, and D. K. Grandy. Circuitry underlying antiopioid actions of orphanin FQ in the rostral ventromedial medulla. J. Neurophysiol. 78: 3351–3358, 1997. Several laboratories recently identified a 17 amino-acid peptide, termed “nociceptin” or “orphanin FQ (OFQ)”, as the endogenous ligand for the LC132 (or “opioid receptor-like 1 ”) receptor. Taken together with the fact that the cellular effects of OFQ are to a large extent opioid-like, the close relationship between the LC132 receptor and known opioid receptors raised expectations that the behavioral effects of this peptide would resemble those of opioids. However studies of the role of OFQ in nociception have not provided a unified view. The aim of the present study was to use a combination of electrophysiological and pharmacological techniques to characterize the actions of OFQ in a brain region in which the circuitry mediating the analgesic actions of opioids has been relatively well characterized, the rostral ventromedial medulla (RVM). Single-cell recording was combined with opioid administration and local infusion of OFQ in the RVM of rats lightlyanesthetized with barbiturates. The tail flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of physiologically identifiable RVM neurons with distinct responses to opioids have been characterized. off -cells are activated, although indirectly, by opioids, and there is strong evidence that this activation is crucial to opioid antinociception. on -cells, thought to enable nociception, are directly inhibited by opioids. Cells of a third class, neutral cells, do not respond to opioids and whether or not they have any role in nociceptive modulation remains an open question. OFQ infused within the RVM profoundly suppressed the firing of all classes of RVM neurons, blocking opioid-induced activation of off -cells. The antinociceptive effects of a μ-opioid agonist infused at the same site were significantly attenuated in these animals. Those of systemically administered morphine, which can produce its antinociceptive effects by acting at a number of CNS sites, were not blocked by RVM OFQ. Inasmuch as activation of off -cells can account for the antinociceptive action of opioids within the RVM, these results demonstrate that, at least within the medulla, OFQ can exert a functional “antiopioid” effect by suppressing firing of this cell class. However to the extent that antinociceptive and pronociceptive outflows from various brain regions involved in both transmission and modulation of nociception are active under different conditions, focal application of OFQ in different regions could potentially produce either hypalgesia or hyperalgesia. Footnotes Address for reprint requests: M. M. Heinricher, Division of Neurosurgery, L-472, Oregon Health Sciences University, Portland, OR 97201. Copyright © 1997 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Circuitry Underlying AntiOpioid Actions of Orphanin FQ in the Rostral Ventromedial Medulla

Loading next page...
 
/lp/the-american-physiological-society/circuitry-underlying-antiopioid-actions-of-orphanin-fq-in-the-rostral-tNsMaKmrL4
Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract Heinricher, M. M., S. McGaraughty, and D. K. Grandy. Circuitry underlying antiopioid actions of orphanin FQ in the rostral ventromedial medulla. J. Neurophysiol. 78: 3351–3358, 1997. Several laboratories recently identified a 17 amino-acid peptide, termed “nociceptin” or “orphanin FQ (OFQ)”, as the endogenous ligand for the LC132 (or “opioid receptor-like 1 ”) receptor. Taken together with the fact that the cellular effects of OFQ are to a large extent opioid-like, the close relationship between the LC132 receptor and known opioid receptors raised expectations that the behavioral effects of this peptide would resemble those of opioids. However studies of the role of OFQ in nociception have not provided a unified view. The aim of the present study was to use a combination of electrophysiological and pharmacological techniques to characterize the actions of OFQ in a brain region in which the circuitry mediating the analgesic actions of opioids has been relatively well characterized, the rostral ventromedial medulla (RVM). Single-cell recording was combined with opioid administration and local infusion of OFQ in the RVM of rats lightlyanesthetized with barbiturates. The tail flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of physiologically identifiable RVM neurons with distinct responses to opioids have been characterized. off -cells are activated, although indirectly, by opioids, and there is strong evidence that this activation is crucial to opioid antinociception. on -cells, thought to enable nociception, are directly inhibited by opioids. Cells of a third class, neutral cells, do not respond to opioids and whether or not they have any role in nociceptive modulation remains an open question. OFQ infused within the RVM profoundly suppressed the firing of all classes of RVM neurons, blocking opioid-induced activation of off -cells. The antinociceptive effects of a μ-opioid agonist infused at the same site were significantly attenuated in these animals. Those of systemically administered morphine, which can produce its antinociceptive effects by acting at a number of CNS sites, were not blocked by RVM OFQ. Inasmuch as activation of off -cells can account for the antinociceptive action of opioids within the RVM, these results demonstrate that, at least within the medulla, OFQ can exert a functional “antiopioid” effect by suppressing firing of this cell class. However to the extent that antinociceptive and pronociceptive outflows from various brain regions involved in both transmission and modulation of nociception are active under different conditions, focal application of OFQ in different regions could potentially produce either hypalgesia or hyperalgesia. Footnotes Address for reprint requests: M. M. Heinricher, Division of Neurosurgery, L-472, Oregon Health Sciences University, Portland, OR 97201. Copyright © 1997 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Dec 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off